• Title/Summary/Keyword: 상용 유한 요소

Search Result 376, Processing Time 0.026 seconds

Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows (섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측)

  • Suh, Young-W.;Kim, Sung-Joon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • In this study, the equivalent elastic modulus of flexible textile composites was predicted by nonlinear finite element analysis. The analysis was carried out considering the material nonlinearity of fiber tows and the geometrical nonlinearity during large deformation using commercial analysis software, ABAQUS. To account for the geometrical nonlinearity due to the large shear deformation of fiber tows, a user defined material algorithm was developed and inserted in ABAQUS. In results, nonlinear stress-strain curve for the flexible textile composites under uni-axial tension was predicted from which effective elastic modulus was obtained and compared to the test result. The effective elastic moduli were calculated for the various finite element models with different waviness ratio of fiber tow.

Simulation of Blasting Demolition of Reinforced Concrete Structures and Ground Vibration using Finite Element Method (유한요소법을 이용한 구조물의 발파해체 붕괴거동 및 지반진동 모사에 관한 연구)

  • Choi, Joo-Hee;Jung, Jae-Woong;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.190-202
    • /
    • 2009
  • With the increasing demand for blasting demolition in urban areas, the simulation of structural collapse prior to the real blasting operation is a key process for ensuring the success and safety of the blasting demolition. The simulation of collapsing behavior of a structure is not only vital for preventing unexpected economic loss and casualties, but also helpful in minimizing public claims by precisely estimating the environmental impact resulting from the operation. This study proposes a new technique for simulation of a blast demolition using FEM based LS-DYNA codes. The technique tries to simplify the complex arrangement of reinforcing bars, and use the actual properties of the concrete and steel reinforcing bars, thereby improving the overall capability of the simulation to match well with the collapsing behavior of real-scale structures.

Analysis of the residual stress as the thickness of thin films and substrates for flexible CIGS solar cell (연성 CIGS 태양전지의 기판과 박막층의 두께에 따른 잔류응력해석)

  • Han, Yoonho;Lee, Minsu;Um, Hokyung;Kim, Donghwan;Yim, Taihong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.116.2-116.2
    • /
    • 2011
  • 연성 CIGS 태양전지를 제작하기 위해서는 휘어지는 연성 기판재의 적용이 반드시 필요하다. 상용되는 연성 기판재로는 플라스틱, 폴리이미드, 금속재가 있다. 그러나 플라스틱과 폴리이미드는 고효율의 CIGS 흡수층을 제조하기 위한 $500{\sim}600^{\circ}C$의 공정에 접합하지 못하다. 금속 기판재의 경우는 몰리브데늄, 알루미늄, 티타늄, 크롬강, 스테인레스강, 합금재 등이 있다. 이러한 금속 기판재 중에서 Fe-Ni 합금재는 Ni 함량의 변화에 따라 기계적, 자기적, 열팽창 특성이 다르게 나타나는 것으로 알려져 있다. 선행 연구에서 CIGS 태양전지의 기판재로 열팽창 계수가 박막층과 유사한 SUS400번 계열과 Fe-52Ni이 적합하다는 것을 확인 하였다. 따라서 본 연구에서는 유한요소해석(Finite element analysis) 프로그램인 Algor를 이용하여 CIGS solar cell을 설계하고 Fe-52Ni 기판재와 절연층인 SiO2, 흡수층인 CIGS의 두께에 따른 Cell의 잔류응력을 해석하였다.

  • PDF

Military Load Classification (MLC) on Concrete Bridges in North Korea (북한 콘크리트 교량의 군용하중급수 평가)

  • Park, Hyo Bum;Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.513-520
    • /
    • 2017
  • For the last 60years, North Korea has constructed a lot of roadway bridges with different standard from that used in South Korea, and since North Korea prefer to take advantage of train more than truck for long distance transport, the construction and maintenance of roadway bridges have not been constructed effectively. Upon these situations, an exact evaluation of the resisting capacity for bridges in North Korea has been required to check of any bridge can be used in time of war. This paper introduces an evaluation of bridges in North Korea on the basis of Military Load Classification (MLC). Three different types of concrete bridges are considered, and the numerical analysis and design calculation give the military loadings which can pass through the bridges in North Korea.

Compressive Behavior for Smart Skin of Sandwich Structure (스마트 스킨 샌드위치 시편의 압축거동 연구)

  • Kim, Young-Sung;Kim, Yong-Bum;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Jeo-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.56-64
    • /
    • 2002
  • In this work, a smart skin of multi-layer structure is designed and manufactured. Through the compression test, the characteristic of smart skin behavior was examined. We have predicted stress of each layer and the first failed layer of the smart skin structure by using MSC/NASTRAN. The finite element model was verified by comparing measured data from the compression test and result from the geometrically linear/non-linear analysis. The finite element model was used for obtaining design data from the parametric study. It was confirmed that shear moduli of honeycomb core affect the buckling load of smart skin where shear deformation was considerable.

Minimum Weight Design of the Boom of an Ecavator (굴삭기 붐의 최적 설계)

  • 임오강;신양범;이병우
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.91-98
    • /
    • 1993
  • Minimum weight design of the boom of an excavator with stress and displacement constraints was performed. The procedure of analysis consists of the following steps. The finite element model of the boom was built up by using 227 triangular plate elements each of which has three nodes. And then the finite element program was implemented and its accuracy was verified by comparing its results with those of the commercial structural analysis package-ANSYS 4.4A. For the constraints of stresses and displacements, the design sensitivities of those were computed using direct differentiation method. To verify the reliability of them the results were compared with those of the finite difference method. The optimum design value was obtained by using PLBA(Pshenichny-Lim-Belegundu-Arora)non-linear optimization program which adopts the active set strategy. Using the above results, minimum weight design of an excavator boom showed an effect of 27% reduction in weight.

  • PDF

Flow-induced Vibration Time Response Analysis of Loosely Supported Multi-Span Tube using Commercial FEA Code (지지점 간극을 갖는 다점지지 유연관의 유동하중에 의한 시간응답 이력해석과 상용유한요소 해석코드의 적용)

  • Lee, Kang Hee;Kang, Heung Seok;Shin, Chang Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • Time domain response analysis for vibro-impact nonlinear behavior of multi-span tube with loose supports was performed using commercial FEA code and user subroutine. Support geometry of multi-span tube with a finite gap is realistically modeled by analytical rigid surface. Model of hydrodynamic force is based on the Qusai-steady model which accounts for the inclined angle of relative flow velocity and time delay between flow force and resulting tube motion. During tube vibration from flow loading, impact and friction at the support location is simulated using commercial FEA code with master slave contact algorithm. Analysis results has reasonable agreement with those of references and test experience. Plan of further refinement of analysis model and future test verification is briefly introduced.

Extrusion Process Analysis of Al/Cu Clad Composite Materials by Finite Element Method (유한요소법을 이용한 Al/Cu 층상복합재료의 압출공정해석)

  • 김정인;강충길;권혁천
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.87-97
    • /
    • 1999
  • A clad material is a different type of the typical composites which are composed of two or more matericals joined at their interface surface. The advantge of cald material is that the combination of different materials can satisfy both the need of good mechanical properties and the other demand of user such as electrical properties instantaneously. This paper is concerned with the direct and indirect extrusion processes of copper-clad aluminum rod. Extrusion of copper-clad aluminum rod was simulated using a commercially available finite element package of DEFORM. The simulations were performed for copperclad aluminum rod to predict the distributions of temperature, effective stress, effective strain rate and mean stress for sheath thicknesses, die exit diameters and die temperatures.

  • PDF

Development of Program for Predicting GBD to Improve Canning Process Capability for Catalytic Converter (촉매변환기의 캐닝 공정능력 향상을 위한 GBD 예측 프로그램의 개발)

  • Lee, Young Dae;Chu, Seok Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.419-427
    • /
    • 2013
  • The catalytic converters for automobile exhaust systems are manufactured by inserting a mat-wrapped substrate into a stainless steel can. A residual pressure that is too high will initiate a fracture in the substrate. In contrast, a residual pressure that is too low will fail to hold the substrate in the acceleration or deceleration phase. Both the process capability and mat pressure on the substrate are predicted while considering the effect of the statistical variation in the dimensions of the parts. The validity of the solutions is then confirmed. A program using EXCEL combines a finite element analysis and process capability analysis in one program.

Comparison of Saturated and Unsaturated Water Flows through Pavement Systems

  • Lim, Yu-Jin;Hue, Nguyen Tien
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2009
  • Most of the current drainage criteria have been developed on the basis of experimental field results and theoretical analyses of infiltration under saturated conditions. The objective of this study is to extend the understanding of pavement drainage systems by considering unsaturated condition in the sublayers. Analyses of unsaturated flows through pavements was performed by running finite element program(SEEP/W) with a range of pavement materials and drainage parameters. Meanwhile, the widely used DRIP program developed by FHWA is based on assumption of saturated condition of pavements. Differences between saturated and unsaturated condition in the sublayers of the pavements are verified. It is verified that for unsaturated conditions time to drain would take longer time compared to saturated condition.