핵융합 장치의 플라즈마 운행동안 토카막 내벽에 도달하는 온도는 최저 $600^{\circ}C$ 이상이다. 또한 플라즈마 자체와 사용자(User)들의 시료로부터 방출되는 입자들에 의한 내벽 충격(damage)은 장기간의 안정적인 운행 및 연구에 심각한 영향을 미친다. 이러한 이유로 토카막 제작시 내벽 보호재의 선정은 매우 높은 비중을 차지한다. Graphite는 높은 융점과 가공의 용이성으로 토카막 내벽의 보호재로 선호되는 물질이다. 그러나 토카막 용기(vessel)에 사용되는 스테인레스 스틸(AISI 316LN)보다 약 50배 이상의 기체 방출율(outgassing rate)을 가진다. 그러므로 장착 이전의 초기 청정화 과정이 매우 중요하며, 특히 400m2의 약 2톤(2000kg)의 graphite가 사용되므로 대량 처리를 할 수 있는 방법의 선정도 함께 개발되어야 한다. 본 연구팀에서는 처음 10개 회사의 시제품을 검토한 후, 최종 2개 회사의 4가지 종류의 시료를 선정하였다. 선정된 시료는 Union Carbide의 ATJ와 Toyo Tanso의 IG-110, IG-43, Ig-430이다. 시료는 비절삭유(oil-free) 가공에 의해 80$\times$2$\times$3 (mm)의 크기로 제작되었고 에탄올과 메탄올 용액에서 초음파 세척되었다. 건조된 시료는 TDS(Thermal Desorption Spectroscopy) 장치에 장착되어 세 단계의 실험을 하였다. 처음은 승온(상온 ~100$0^{\circ}C$)에 의한 방출 기체의 성분 분석, 두 번째는 장기간 (2주) 대기 노출 후 주요 방출 기체의 온도에 따른 변화, 마지막으로는 특정 기체에서의 장기간 보관후, 주요 방출 기체의 온도에 따른 변화를 조사하였다. 다음 그림 1은 본 연구에서 사용된 TDS 장치의 개략도이고 그림 2는 TDS 장치에 장착 직 후와 대기 중 노출된 시료들의 온도증가에 따른 총 압력의 변화이다.
투명전도산화물에 대한 연구가 많이 이루어지고 있으며, 최근 Ga이 도핑된 ZnO의 연구가 많이 되고 있다. 투명전도산화물은 태양전지, 평면디스플레이와 같은 다양한 분야에 응용이 가능하다. 본 연구에서는 RF magnetron sputtering을 이용하여 Ar gas 유량 변화에 따른 GZO 박막을 연구하였다. 기판으로는 유리기판을 사용하였으며, 전기적, 광학적, 구조적인 특성을 조사하였다. 박막의 증착시 초기 압력은 $2.0{\times}10^{-6}$Torr 이하로 하였으며, 증착온도는 상온으로 고정하여 증착하였다. 기판은 Corning 1737 유리 기판을 사용하였고, GZO 타겟은 ZnO : Ga 분말이 각각 97 : 3 wt.%로 소결된 타겟을 사용하였다. Ar 유량변수는 20, 40, 60, 80 sccm으로 변화를 주었다. 유리기판에 증착된 모든 GZO박막은 약 200 nm의 두께로 증착되었으며 모든 GZO 박막에서 85%이상의 투과율을 나타내었다. Ar 유량이 적을수록 투과율을 증가하였으며, 광학적 밴드갭 또한 증가하였다. 공정별로 제작된 모든 GZO박막에서 (002)면의 배향성이 관찰되었고, Ar 유량이 적을수록 박막의 결정성은 향상되었다. Hall 측정 결과 Ar 유량이 20 sccm일 때 전기비저항 $3.46{\times}10^{-3}{\Omega}cm$, 전하의 농도 $3.832{\times}10^{-20}\;cm^{-3}$, 이동도 $4.7cm^2V^{-1}s^{-1}$로 전극으로서의 특성을 나타내었다. GZO 박막의 경우 Ar 유량이 적었을 때 결정성이 높아지고, 전극 특성이 더 우수한 것을 확인할 수 있었다.
비냉각 적외선 검출소자는 빛이 전혀 없는 환경에서도 사물을 감지하는 열상장비의 핵심소자이다. 마이크로볼로미터 적외선 검출기는 상온에서 동작하며, 온도안정화를 위해 TEC를 장착하여 진공패키지로 조립된다. 패키지는 진공을 유지할 수 있도록 일반적으로 메탈로 제작되며, 단가 감소 및 생산성 증대를 위해 wafer level packaging 방법을 이용한다. 마이크로볼로미터의 특성은 패키지의 진공 변화에 매우 민감하다. 센서의 감도를 증가시키기 위해서는 진공환경을 유지해야 한다. 볼로미터 소자의 특성은 상압에서 열전도는 기판과 멤브레인 사이의 에어갭을 통해 열손실을 야기하므로 센서의 반응도가 현저히 줄어든다. 에어갭이 1 um 정도 되더라도 그 사이에 존재하는 열전도가 가능하므로 진공을 유지하여 열고립 상태를 증대시킬 수 있다. 이에 본 연구에서는 소자의 동작시 압력, 즉 진공도가 볼로미터 소자의 반응도 특성에 미치는 영향을 조사하였다. 마이크로볼로미터 소자는 $2{\times}8$ 어레이 형태로 제작하였으며, metal pad를 각 단위셀에 배치하였으며, 공통전극으로 한 개의 metal pad를 넣어 설계하였다. 흡수체로써 VOx를 사용하였으며, 열 고립구조를 위해 2.5 um 공명 흡수층의 floating 구조로 멤브레인을 형성하였다. 진공패키지는 메탈패키지를 제작하여 볼로미터 칩을 TEC 위에 장착하였으며, 신호의 감지를 위해 가변저항을 매칭시켰다. 반응도는 신호 대 잡음 값을 획득하여 소자에 도달하는 적외선 에너지에 대해 반응하는 값을 계산에 의해 얻어내는 것이다. 픽셀 크기는 $50{\times}50$ um이며, 패키지 조립 공정 후 온도변화에 따른 저항 측정을 통해 TCR 값을 얻었다. 이때 TCR은 약 -2.5%/K으로 나타났다. $2{\times}8$의 4개 단위소자에 대해 측정한 값은 균일하게 TCR 값이 나타났다. 광반응 특성은 볼로미터 단위소자에 대해서 먼저 고진공(5e-6 torr) 하에서 측정하였으며, 반응도는 25,000 V/W의 값을 나타내었고, 탐지도는 약 2e+8 $cmHz_{1/2}$/W로 나타났다. 패키지의 압력 조절을 위해 TMP 및 로터리 펌프를 이용하여 100 torr에서 1e-4 torr의 범위에서 압력조절 밸브를 이용하여 질소가스의 압력으로 진공도를 변화시켰다. 적외선 반응신호는 압력이 증가함에 따라 감소하였으며, 2e-1 torr의 압력에서 신호의 크기가 감소하기 시작하여 5 torr에서 반응도의 1/2 값을 나타냄을 알 수 있었다. 30 torr 이상에서는 신호가 잡음값 과거의 동일하여 신호대 잡음비가 1로 나타남을 알 수 있었다. 또한 진공도 변화에 대해, 흑체온도에 따른 반응도 및 탐지도의 특성을 조사한 결과를 발표한다. 반응도의 증가를 위해 진공도는 진공도는 1e-2 torr 이하의 압력을 유지해야 함을 본 실험을 통해 알 수 있었다.
본 연구에서는 저온유동성 성능검사 시스템 구현을 통해 디젤 차량용 통합형 연료필터의 성능을 평가한다. 저온유동성시험 장치의 시험조건은 경유(또는 등유)를 사용하고, 상온, -20 및 $-30^{\circ}C$ 에서 경유공급압력 $3.4kgf/cm^2$, 연료공급량 60 l/H, 설정전류 30 A 및 전압은 $13V_{dc}$를 사용한다. 시료시험으로 통합필터를 지그에 장착하고, 경유(또는 등유)를 일정압력과 유량으로 설정하여 챔버 탱크와 필터에 채운 후, 설정시간 동안 설정온도로 냉각한 후, 필터 전후에 따라 유압과 시동시간, 히터의 소모전류 및 전력을 측정한다.
투명전도박막은 ITO, $SnO_2$, ZnO, 등이 있으나 $SnO_2$는 자외선 영역까지 투과시키는 우수한 광학적 특성을 나타내지만, 상당히 큰 전기저항으로 인해 현재는 현재 ITO가 널리 이용되고 있다. ITO(Indium Tin Oxide)박막은 자외선 영역에서 반사율이 높으며 가시광선영역에서는 80%이상의 뛰어난 투과율을 가지고 있다. 또한 낮은 전기저항과 넓은 광학적 밴드갭 때문에 가장 유용한 투과전도성 재료 중에 하나이다. 이러한 특성 때문에 여러 가지 문자 표시소자의 투명전극, 태양전지의 창재료, 정전차폐를 위한 반도체 포장재료, 열반사막, 면발열체, 광전변환 소자에 응용되고 있다. 일반적으로 박막의 제작에는 저항가열법과 전자선가열법, 스퍼터링법의 물리적 증착과 화학적 증착으로 나뉜다. 본 논문에서는 증착온도를 달리 하여 RF-sputtering에 의해 ITO박막을 증착한 후 온도증가에 따른 박막의 특성을 연구하였으며 또한 광역평탄화를 위한 CMP공정을 적용하여 증착온도가 연마에 미치는 영향을 연구하였다. 본 실험에서 사용된 ITO박막은 $2{\times}2Cm$의 Corning glass위에 증착되었으며 타겟은 $In_2O_3$와 $SnO_2$가 9:1로 혼합된 Purity 99.99%이상의 직경 2 inch인 ITO타겟을 사용하였다. 박막 증착시 기판온도는 상온에M $200^{\circ}C$까지 변화시켰으며 RF power는 100W로 일정하게 하였으며 증착압력은 $8{\times}10^{-2}$Torr이였다. CMP공정조건은 헤드속도 60rpm, 플레이튼 속도 60rpm, 슬러리 주입 유량 60mml/min, 압력 $300g/cm^2$이였다. 전기적 특성은 four point probe를 이용하여 측정하였으며 광학적 특성은 UV-Visible Spectrometer를 이용하여 200~900nm의 파장범위에서 광투과도를 측정하였다.
GaP는 가시광선 발광다이오드을 얻을 수 있는 적절한 재료중의 하나로 해당영역의 파장에 대하여 높은 양자효율을 얻을 수 있고, 깊은 준위 재결합이 없기 때문에 GaP 녹색 및 As 첨가한 GaAsP 적색 LED 에 적용할 수 있습니다. 또한, 상온에서 2.2 eV 에 해당하는 넓은 에너지 밴드갭을 가지고 있으므로, 소음이 없는 자외선 검출기에도 적합합니다. 이 물질에 대한 소자들은 기존에 GaP 기판을 사용하였습니다. 최근, GaP 와 격자상수가 비슷한 Si 기판을 활용하여 그 위에 성장하는 방법에 대한 관심이 많아졌습니다. Si는 물리적 및 화학적으로 안정하고 딱딱한 소재이며 대면적 기판을 쉽게 얻을 수 있어 전자 기기 및 대규모 집적 회로의 좋은 소재입니다. Si 와 대조적으로 GaP은 깨지기 쉬운 재료이며 GaP 기판은 Si와 같은 대면적 기판을 얻을 수 없습니다. 이러한 문제의 한 가지 해결책은 Si 기판위에 GaP 층의 성장입니다. GaP 과 Si의 조합은 현재의 광전소자 들에 더하여 더 많은 응용프로그램들을 가능하게 할 것입니다. 그러나, Si 기판위에 GaP 성장 시 삼차원적 성장 및 역위상 경계면과 같은 문제점들이 발생하므로 질이 높고 균일한 결정의 GaP 를 얻기가 어렵습니다. 따라서, Si 에 GaP 의 성장시 초기 단계를 제어하는 성장 기술이 필요합니다. 본 연구에서는, 유기금속화학증착법을 이용하여 Si 기판위에 양질의 GaP를 얻을 수 있는 최적의 성장조건을 얻고자 합니다. 실험 조건은 Si에 GaP의 에피택셜 성장의 초기 단계에 영향을 주는 V/III 비율, 성장압력, 기판방향 등을 가변하는 조건으로 진행하였습니다. V/III 비율은 100~6400, 성장 압력은 76~380 Torr로 진행하였고, Si 기판은 just(001)과 2~6도 기울어진 (001) 기판을 사용하였습니다.
Bodner-Partom 점소성 모델을 이용하여 액체로켓 연소기 재생냉각 챔버의 구조해석을 수행하였다. 구조해석에 사용한 점소성 모델의 재료상수를 구하기 위하여 구리합금에 대하여 변형률 속도를 변화시켜 인장시험을 상온 및 고온에서 수행하였다. 점소성 모델의 재료상수는 구리합금의 변형률 속도 시험 데이터로부터 구하여 사용하였으며 점소성 모델의 구현은 상용유한요소 해석 프로그램인 Marc의 사용자 서브루틴을 이용하여 구현하였다. 구조해석 결과 냉각 채널은 압력에 의한 영향보다 열하중에 의하여 대부분의 변형이 발생하며 연소기의 작동조건에서 냉각 채널의 안정성 여부를 확인할 수 있었다.
금속분말을 연소시키기 위한 스월 연소기 설계의 기초단계로써 단일 접선 공급유로를 갖는 스월 혼합챔버를 제작하고 Paticle Image Velocimetry(PIV)를 사용하여 스월 혼합챔버의 내부 유동장 측정실험을 수행하였다. 상온의 공기를 작동유체로 사용하였으며 접선 공급유량이 증가하는 경우의 스월 혼합 챔버 내 축방향 및 접선방향 성분 속도를 획득하였다. 측정된 유동장을 바탕으로 스월유동과 역압력 구배로 인해 발생하는 외부 유입유동간의 혼합특성을 평가 하였다.
기존 산화물 투명전극에 비해 더욱 우수한 전기전도성을 가지는 다층구조의 투명전도막을 마그네트론 스퍼터링 장치를 이용해 제작하였다. 전기전도성을 극대화하기 위해 비저항이 가장 낮은 Ag 금속을 사용하고, 금속층의 상하부에 반사광을 재반사시키는 산화물층을 형성시킨 다층막구조를 이용하였다. Ag 금속막은 충분한 투과율과 전기전도성을 확보하기 위해 연속된 막을 이루기 시작하는 두께인 140$\AA$로 증착하였고, ITO 박막은 가시광 영역의 반사광을 재반사시키는 최적의 두께인 600$\AA$ 내외로 증차하였다. Ag 박막의 증착조건과 후속 ITO 박막증착공정은 Ag박막의 특성에 영향을 미치므로 다층막의 전기적, 광학적 특성은 이들 증착 조건에 민감한 영향을 받음을 확인하였다. 상온에서 Ag박막을 형성하고 ITO박막은 7mTorr의 낮은 압력에서 증착하여 제작한 투명전도막은 SVGA 급의 STN-LCD용 투명전극으로 사용 가능한 4Ω/ㅁ 이하의 낮은 면저항과 빛의 파장이 550nm일 때 85%이상의 투과도를 나타내었다.
RF magnetron sputtering을 이용하여 Ar 및 $O_2$유량에 따라 GZO 박막을 유리기판 위에 제작하고 구조적, 광학적, 전기적 특성을 조사하였다. 박막 증착 조건의 초기 압력은 $1.0{\times}10^{-6}$ Torr, RF 파워는 25W, 증착온도는 상온으로 고정하였으며 기판은 Corning 1737 유리 기판을 사용하였다. 공정 변수로 Ar 유량을 40 sccm, 60 sccm, 80 sccm, 100 sccm으로 변화시켰으며, $O_2$ 가스비율을 5~20%으로 변화를 주어 실험을 진행하였다. GZO 타겟은 ZnO,Ga 분말을 각각 97:3 wt.%로 소결된 타겟을 사용하였다. 유리기판 위에 증착된 모든 GZO 박막에서 (002) 면의 우선 배향성이 관찰되었고 평균 85% 이상의 투과율을 나타내었다. 산소유량이 포함되지 않고 Ar 유량이 적은 GZO 박막의 결정성은 향상되었고, 광학적 밴드갭은 증가하였다. Hall 측정 결과 산소의 유량이 포함되어 있는 박막에서는 모두 완전한 산화물에 가까운 화학양론적 조성으로 면저항이 $10^6{\Omega}/{\Box}$ 이상인 부도체 특성을 보였으며, 산소가 포함되지 않은 샘플에서는 투명전도막 특성이 확인되었다. 산소가 포함되지 않은 Ar 유량이 60 sccm일 때 전기비저항 $3.25{\times}10^{-3}{\Omega}cm$, 전하의 농도 $9.41{\times}10^{20}\;cm^{-3}$, 이동도 2.04 $cm^2V^{-1}s^{-1}$로 투명전도막으로 적합한 전기적 특성을 얻었다. GZO 박막의 경우 산소가 포함될 경우 결정성이 저하되고, 절연특성을 갖는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.