• Title/Summary/Keyword: 상온혼합

Search Result 290, Processing Time 0.022 seconds

Optimization of reactive nano-foil by the magnetron sputtering and industrial application (마그네트론 스퍼터링을 이용한 반응성 나노 포일의 제조 공정 최적화 및 산업적 응용)

  • Jo, Yong-Gi;Lee, Won-Beom;Yu, Se-Hun;Choe, Yun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.29-29
    • /
    • 2015
  • Al과 Ni이 나노 두께로 적층되어 있는 나노 포일은 외부의 촉발에 의해 원자수준의 상호 확산을 통해 합금화 된다. AlNi 합금이 되서 $-{\Delta}H$의 변화로 인하여, 외부에 열을 공급하게 되어 최대 엔탈피의 변화 일어날 수 있는 Al과 Ni의 혼합비율을 조사하였다. 나노 포일의 제조 공정은 마그네트론 스퍼터링을 이용하였으며, 나노 박막의 두께 및 적층 공정에 대한 공정 최적화를 하였다. 제조된 나노 포일은 금속-세라믹의 상온접합을 실시하여 산업적 응용에 대한 가능성을 고찰하고자 하였다.

  • PDF

Recyling of Waste Materials for Iron Ore Sintering (제철소내 폐기물의 소결공정에서의 이용기술)

  • 문석민;이대열;정원섭;신형기
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.12-20
    • /
    • 1994
  • Difficulties lies on using the dust from iron making process as a raw material for sintering process mainly because of high amount of Zn or alkali content and its ultra fine characteristics. To eliminate these toxic influence, new fluxing materials were tested and could get a very successful results. This fluxing materials, Calcium-ferrite of magnesio-ferrite were made from various waste materials such as lime stone sludge, bag filter dust, waste EP dust and dolomite sludge by simple way of pre-sintering. Sintering behavior as a fluxing materials was revealed to be good in any aspects and new concept of total recycling system could be established.

  • PDF

Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.114-121
    • /
    • 2010
  • Portland cement production is under critical review due to high amount of CO2 gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated ground granulated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/ blast furnace slag tand curing condition on the flowability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/blast furnace slag always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% ground granulated blast furnace slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

  • PDF

Effect of the Combined Using of Fly Ash and Blast Furnace Slag as Cementitious Materials on Properties of Alkali-Activated Mortar (결합재(結合材)로 플라이애시와 고로(高爐)슬래그의 혼합사용(混合使用)이 알칼리 활성(活性) 모르타르의 특성(特性)에 미치는 영향(影響))

  • Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.19-28
    • /
    • 2010
  • Attempts to increase the utilization of a by-products such as fly ash and blast furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/slag, type of alkaline activator and curing condition on the workability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/slag and the type of alkaline activator always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

A Thermodynamical Study on the Phase Formation and Sequence by Ion Beam Mixing in Al/Pd System (이온선 혼합에 의한 Al/Pd계의 상형성 및 전이에 관한 열역학적 연구)

  • Choi, Jeong-Dong;Hong, Jin-Seok;Kwak, Joon-Seop;Chi, Eung-Joon;Park, Sang-Wook;Baik, Hong-Koo;Chae, Keun-Hwa;Jung, Sung-Mun;Whang, Chung-Nam
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.209-219
    • /
    • 1993
  • Evaporated Al/Pd thin films were irradiated with various doses to produce intermetallic compounds. In order to study the first phase formation and phase sequence, RBS and TEM studies have been used. It was found that the initial phase formed by irradiation of $5{\times}10^{15}Ar^+/cm^2$ was $Al_3Pd_2$, while $1.5{\times}10^{16}Ar^+/cm^2$ gave the subsequent phase of AlPd. This phenomenon was analysed using effective heat of formation (${\Delta}$H') model. The experimental results agree with that predicted by effective heat of formation model. This model has been extended to predict the first phase formation and phase sequence by ion beam mixing in metal/Si systems as well as metal-metal systems.

  • PDF

Characteristics of Diamond Like Carbon Film Fabricated by Plasma Enhanced Chemical Vapor Deposition Method with mixed Ar, N2 gas rate (혼합된 Ar, N2 가스 유량에 따른 PECVD 방법에 의하여 제작된 다이아몬드 상 탄소 박막의 특성)

  • Gang, Seong-Ho;Kim, Byeong-Jin;Bae, Gyeong-Tae;Ju, Seong-Hu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.87-87
    • /
    • 2018
  • 다이아몬드 상 탄소(diamond-like carbon, DLC)는 상당량의 $sp^3$ 결합을 가지는 비정질 탄소(a-C) 또는 수소화 비정질 탄소(a-C:H)로 이루어진 준안정 형태의 탄소이다. DLC는 전기 저항과 굴절률이 높고 화학적으로 다른 물질과 반응하지 않으며, 마찰계수가 낮고 경도가 높아 자기 디스크, 광학 소자 등의 다양한 분야에서 적용되고 있다[1,2]. 또한 다이아몬드에 비해 상온에서 성장이 가능할 정도로 합성온도가 낮아 적용 기판의 제한이 거의 없고, 증착 방법과 조건에 따라 탄소 결합의 다양성과 비정질성이 변화하기 때문에 넓은 범위의 특성을 얻을 수 있는 장점이 있다. 지금까지 DLC 박막의 광학적 특성, 특히 굴절률, 광학적인 에너지 밴드 갭, 자외선과 적외선 투과성에 대해서는 많은 연구가 진행되었으나 가시광선의 투과성에 대한 연구는 제한적이며[4], 가시광선 투과도 개선에 대한 연구는 전무하다. 본 연구에서는 ITO 기판 위에 DLC를 합성하고 기계적 특성과 가시광선 영역 투과도를 조사하였다. RF-PECVD(radio frequency plasma enhanced chemical vapor deposition) 방법에 의해서 $C_2H_2+Ar$ 혼합 가스 비율과 $C_2H_2+N_2$ 혼합 가스 비율을 변화시켜 ITO 기판 위에 DLC 박막을 합성하였다. 공정 압력과 rf-power, 증착시간, 기판온도는 0.2 torr, 40 W, 5 분, $50^{\circ}C$로 고정하고, 공정 가스는 $C_2H_2+Ar$$C_2H_2+N_2$가 200 sccm이 되도록 비율을 변화하였다. $C_2H_2:Ar$$C_2H_2:N_2$의 비율은 180 : 20, 160 : 40, 140 : 60, 120 : 80, 100 : 100이 되도록 가스의 유량을 조절하였다. 투과도는 가시광선(380 ~ 780 nm) 범위에서 측정하였고 두께와 표면조도는 AFM으로 측정하였다. 투과도는 $C_2H_2+Ar$의 Ar 가스 비율이 증가할수록 증가해 140 : 60일 때 최댓값을 나타낸 후 다시 감소하였다. $C_2H_2+N_2$ 투과도는 $N_2$ 가스 비율이 증가할수록 감소하는 경향을 나타내었다. 표면 거칠기는 $C_2H_2+Ar$ 혼합 가스를 사용한 경우의 Ar의 가스 비율이 증가할수록 증가하였다. 그러나 $C_2H_2+N_2$ 혼합 가스를 사용한 경우에는 $N_2$ 가스의 혼합 비율이 증가할수록 감소하였다.

  • PDF

Growth of long persistent $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ phosphor single crystals by the Verneuil method (베르누이법 의한 장잔광성 $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ 단결정 성장)

  • Nam, Kyung-Ju;Choi, Jong-Keon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.225-228
    • /
    • 2005
  • We have grown the long persistent $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ phosphor single crystal by Verneuil method. The obtained single crystals were long persistent phosphorescence peaking at ${\lambda}=520nm$ with a size of about 5 mm diameter, 55 mm length. The melting temperature of $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ measured $T_{mp}=1968^{\circ}C$. The optimum composition was $SrCO_3:Al(OH)_3:Eu_2O_3:Dy_2O_3$ = 1 : 2 : 0.015 : 0.02. Flow rate of $H_2:O_2$ is about 4 : 1. Growthing rate is about 5 mm/hr. The spectra of the phosphorescence from the crystals are quite similar to those obtained with sintered powders used for luminous pigments. The crystalline structure of long persistent $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ phosphor single crystal was determined by X-ray diffraction.

Influence of the Substrate Temperature on the Characterization of ZnO Thin Films (기판온도가 ZnO 박막의 특성에 미치는 영향)

  • Joung, Yang-Hee;Kwon, Oh-Kyung;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2251-2257
    • /
    • 2006
  • We fabricated ZnO thin film successfully by using RF magnetron sputtering and investigated its potential for being utilized as the key material of piezoelectric device with the characterization of ZnO thin film such as such as crystallinity, surface morphology, c-axis orientation, film density. In thin study, $Ar/O_2$ gas ratio is fixed 70/30, RF power 125W, working pressure 8mTorr, distance between substrate and target 70mm, but the substrate temperature is varied from room temperature to $400^{\circ}C$. The relative intensity ($I_{(002)}/I_{(100)}$) or (002) peak in ZnO thin film deposited at $300^{\circ}$ was exhibited as 94%, then its FWHM was $0.571^{\circ}C$. Also, from the surface morphology evaluated by SEM and AFM, the film deposited at $300^{\circ}C$ showed uniform particle shape and excellent surface roughness of 4.08 m. The tendency of ZnO thin film density was exhibited to be denser with increasing substrate temperature but slightly decreased at near $400^{\circ}C$.

Study on Piezoelectric Characteristics of Piezoelectric Paint Sensor According to Poling Time (분극 시간에 따른 압전 페인트 센서의 압전 특성 연구)

  • Han, Dae-Hyun;Park, Seung-Bok;Kang, Lae-Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1069-1074
    • /
    • 2014
  • In this study, the piezoelectric characteristics of a piezoelectric paint sensor were investigated in relation to the poling time. This piezoelectric paint sensor was composed of PNN-PZT powder and epoxy resin with a 1:1 weight ratio. The dimensions of the paint specimen were $40{\times}10{\times}1mm^3$, and the top and bottom sides were both coated with a silver paste to create electrodes. During the poling treatment, the poling time was controlled to examine the effect of the piezoelectric properties, while the poling temperature was fixed at room temperature and the electric field was set to 4 kV/mm. The piezoelectric properties were measured by comparing the output voltage from the paint sensor to the force signal from an impact hammer when the impact hammer hit the specimen. In conclusion, the optimal poling conditions were found to be an electric field of 4 kV/mm and a poling time of around 30 min at room temperature.

Preparation of Cellulose Nanoparticles Loaded with Vitamin E Acetate (비타민 E 아세테이트가 봉입된 셀룰로오스 나노입자의 제조)

  • 남다은;정택규;김승수;신채호;신병철
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.128-134
    • /
    • 2004
  • Cellulose nanoparticles loaded with vitamin I acetate were prepared by modified spantaneous emulsification solvent diffusion method. After cellulose derivatives were dissolved in mixed acetone/ethanol organic solvent with vitamin E acetate, cellulose nanoparticle suspensions were dispersed in poly(oxyethylene sorbitane monooleate) solution using ultrasonicator. Particle size and loading amount of vitamin I acetate were measured by particle size analyser and UV-spectrometer, respectively. The stability of nanoparticle was determined by measuring the change of the particle size at room temperature for 30 days and the morphology was observed by SEM. Morphology of cellulose nanoparticles was spherical and particle size was not changed at room temperature for 30 days. The optimum condition for the preparation of cellulose nanoparticles was 1% w/v cellulose nitrate with 8% w/v poly(oxyethylene sorbitane monooleate) solution. It showed that particle size and loading amount of vitamin E acetate was 65nm and 71%, respectively.