• Title/Summary/Keyword: 상시관측소

Search Result 119, Processing Time 0.02 seconds

Observation of Atmospheric Water Vapors Using AIRS (AIRS를 이용한 대기 수증기 관측)

  • Ha, Ji-Hyun;Kim, Du-Sik;Park, Kwan-Dong;Won, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.547-554
    • /
    • 2009
  • The Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite, which is one of the Earth Observing System satellites managed by National Aeronautics and Space Administration, provides global measurements of the water vapor in the atmosphere using infrared (IR) channels. In this paper, we restored precipitable water vapor (PWV) over a permanent GPS station in Incheon using the IR measurements of AIRS and compared the result with GPS-based PWV estimates. As a result, AIRS PWV had similar trends with GPS PWV; the bias of AIRS PWV against GPS PWV is 0.3 cm and root mean square error (RMSE) 0.7 cm. In addition, the correlation coefficient between AIRS PWV and GPS PWV was 0.89. Thus we conclude that the AIRS PWV reflects local characteristics of the water vapor content.

Development of LX GNSS On-line Data Processing System Based on the GIPSY-OASIS (GIPSY-OASIS 기반 LX GNSS 온라인 자료처리 시스템 개발)

  • Kim, Hyun-Ho;Ha, Ji-Hyun;Tcha, Dek-Kie
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.555-561
    • /
    • 2014
  • Data processing service via internet help user to get the GNSS data processing result more precise and easily. Thus, online data process system is operated and developed by various research groups and national. But this service is difficult to use in domestic cadastral survey. In this study, we developed the online data processing system for a domestic cadastral survey. This is calculated coordinate using NGII CORS(SUWN) fiducially. And use PPP technique by GIPSY-OASIS. If user choose the observation data which want to calculate the coordinate, then is uploaded to GIPSY-OASIS server through FTP. After upload is complete, server automatically calculate coordinate, and send the report about result using e-mail. And it takes 2 minutes runtime on the basis of the 3 sessions. To verify the result, we used the data on SOUL, JUNJ as compared with notified-coordinate from NGII. As a result, got the difference for east-west 1.4 cm, north-south -1.0 cm, vertical 0.5 cm.

Effects of ionospheric disturbances caused by solar storm on rapid-static positioning accuracy (태양폭풍에 의한 전리층 교란이 신속정지측위 정확도에 미치는 영향)

  • Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.651-657
    • /
    • 2011
  • There exists a high correlation between the ionospheric delays and the integer ambiguity in GPS observation equation, so that the sufficient time span is required to revolve the integer ambiguity. This means that the ambiguity resolution plays a key role especially in rapid-static positioning mode. To analyze the effect of ionospheric disturbances on the positioning accuracy, 02/19/2011 day of dataset was selected processed in rapid-static positioning mode. The total of 141 30-minute sessions were processed, i.e., the estimation procedure started every 10 minutes, and the time-to-fix information of each data interval is obtained. In this study, the analysis is performed by comparing the time-to-fix with the magnitudes of ionospheric delays. The computed correlation coefficient between the time-to-fix and the magnitudes of ionospheric delays is 0.31, which indicates the ionospheric disturbances affect the positioning accuracy in rapid-static positioning mode. Therefore, it is required to collect and process sufficient data when the GPS surveying is performed in unfavorable ionospheric conditions.

Improvement of GPS PWV retrieval capability using the reverse sea level corrections of air-pressure (기압의 역해면 경정 보정을 이용한 GPS PWV 복원 능력 개선)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.535-544
    • /
    • 2009
  • Signals from the Global Positioning System(GPS) satellite are used to retrieve the integrated amount of water vapor or the precipitable water vapor(PWV) along the path between a transmitting satellite and ground-based receiver. In order to retrieve the PWV from GPS signal delay in the troposphere, the actual zenith wet delay, which can be derived by extracting the zenith total delay and subtracting the actual zenith hydrostatic delay computed using surface pressure observing, will be needed. Since it has been not co-located between GPS permanent station and automated weather station, the air-pressure on the mean sea level has been used to determine the actual zenith hydrostatic delay. The directly use of this air-pressure has been caused the dilution of precision on GPS PWV retrieval. In this study, Korean reverse sea level correction method of air-pressure was suggested for the improving of GPS PWV retrieval capability and the accuracy of water vapor estimated by GPS was evaluated through a comparison with radiosonde PWV.

GPS water vapor estimation modeling with high accuracy by consideration of seasonal characteristics on Korea (한국의 계절별 특성을 고려한 고정확도 GPS 수증기 추정 모델링)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.565-574
    • /
    • 2009
  • The water vapor weighted vertically mean temperature(Tm) models, which were developed by the consideration of seasonal characteristics over the Korea, was used in the retrieval of precipitable water vapor (PWV) from GPS data which were observed at four GPS permanent stations. Since the weighted mean temperature relates to the water vapor pressure and temperature profile at a site, the accuracy of water vapor information which were estimated from GPS tropospheric wet delay is proportional to the accuracy of the weighted mean temperature. The adaption of Korean seasonal weighted mean temperature model, as an alternative to other formulae which are suggested from other nation, provides an improvement in the accuracy of the GPS PWV estimation. Therefore, it can be concluded that the seasonally appropriate weighted mean temperature model, which is used to convert actual zenith wet delay (ZWD) to the PWV, can be more reduced the relative biases of PWV estimated from GPS signal delays in the troposphere than other annual model, so that it would be useful for GPS PWV estimation with high accuracy.

An Evaluation of the Accuracy of the Vertical Positioning by Distance Using Network RTK-GPS (Network RTK-GPS를 이용한 거리별 수직위치결정의 정확성 평가)

  • Mun, Du-Yeoul;Lee, Sung-Su;Kim, Myeong-Soo;Shin, Sang-Ho;Baek, Tae-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.54-63
    • /
    • 2013
  • In this paper, we evaluate the accuracy of the vertical positioning by distance using Network RTK-GPS. The experimental results confirm that Network RTK-GPS method can acquire data quickly and accurately than conventional leveling methods so that the Network RTK-GPS method is a relatively efficient and economical way for the vertical positioning. Results of validation using permanent GPS stations indicate that visible satellites, PDOP, and VDOP are very good for the vertical positioning. Integrated reference points such as U0997 and U0921 are satisfied with 3 ratings in the rules of public leveling and all the rest are proved improper. When the vertical positioning using Network RTK-GPS is implemented, the geoid height of EGM2008 should be applied for leveling. If the number of geodetic satellite are increasing in the near future, the vertical positioning using Network RTK-GPS can be possible in all the range.

Development of Network-Based Online GPS Baseline Processing System (네트워크 기반 온라인 GPS 기선해석 시스템 개발)

  • Kim, Su-Kyung;Bae, Tae-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.138-146
    • /
    • 2011
  • With the increased use of GPS in the field of various applications including surveying, the request for fast and precise positional information has increased. Several countries such as USA, Canada, and Australia have already been operating Internet-based automatic GPS data analysis system using e-mail and FTP. Expanding GPS market, it is necessary to establish automatic GPS baseline processing system that is accessible via Internet. The system developed in this study is operating on the web, and it allows the users to access easily regardless of time and place. The main processing engines are Bernese V5.0 and PAGES. They process user data with three GPS CORS(Continuously Operating Reference Station), and then send the report to the users through e-mail. This system allows users to process high accurate GPS data easily. It is expected that this system will be used for various GPS applications such as monitoring large-scale structures and providing spatial information services in private sector.

The Analysis of the GPS Data Processing of the NGII CORS by Bernese and TGO (Bernese와 TGO에 의한 국내 GPS 상시관측소 자료처리 결과 분석)

  • Kim, Ji-Woon;Kwon, Jay-Hyoun;Lee, Ji-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.549-559
    • /
    • 2008
  • This study verified the limitations of commercial GPS data processing software and the applicability on precise positioning through comparing the processing results between Bernese and TGO under various conditions. To achieve the goal, we selected three nationwide station data and two smaller local data to constitute networks. By using Bernese and TGO, those networks are processed through the baseline analysis and the network adjustment. The comparative analysis was carried out, in terms of software, baseline length and network scale, observation duration, and number of fixed points. In the comparison between softwares, the scientific software was excellent in accuracy. It was confirmed that, as GPS-related technology is developed, the performance of the receiver was enhanced. And, in parallel with this, even the functionalities of the commercial software were tremendously enhanced. The difference, however, in result between the scientific and commercial software are still exist even if it is not big. Therefore, this study confirms that the scientific software should be used when the most precise position is necessary to be computed, especially if baseline vectors are big.

Impact of Tropospheric Modeling Schemes into Accuracy of Estimated Ellipsoidal Heights by GPS Baseline Processing: Experimental Analysis and Results (GPS 기선해석에 의한 타원체고 추정에서 대류권 오차 보정기법이 정확도에 미치는 영향에 관한 실험적 분석)

  • Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.245-254
    • /
    • 2018
  • Impact of tropospheric correction techniques on accuracy of the GPS (Global Positioning System) derived ellipsoidal heights has been experimentally assessed in this paper. To this end, 247 baselines were constructed from a total of 88 CORS (Continuously Operating Reference Stations) in Korea. The GPS measurements for seven days, acquired from the so-called integrated GNSS (Global Navigation Satellite Systems) data center via internet connection, have been processed by two baseline processing software packages with an application of the empirical models, such as Hopfield, modified Hopfield and Saastamoinen, and the estimation techniques based on the DD (Double-Differenced) measurements and the PPP (Precise Point Positioning) technique; hence a total number of the baseline processed and tested was 8,645. Accuracy and precision of the estimated heights from the various correction schemes were analyzed about baseline lengths and height differences of the testing baselines. Details of these results are summarized with a view to hopefully providing an overall guideline of a suitable selection of the modeling scheme with respect to processing conditions, such as the baseline length and the height differences.

Remote Sensing of GPS Precipitable Water Vapor during 2014 Heavy Snowfall in Gangwon Province (2014년 강원 폭설동안 GPS 가강수량 탐측)

  • JinYong, Nam;DongSeob, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.305-316
    • /
    • 2015
  • The GPS signal delays in troposphere, which are along the signal path between a transmitting satellite and GPS permanent station, can be used to retrieve the precipitable water vapor. The GPS remote sensing technique of atmospheric water vapor is capable of monitoring typhoon and detecting long term water vapor for tracking of earth’s climate change. In this study, we analyzed GPS precipitable water vapor variations during the heavy snowstorm event occurred in the Yeongdong area, 2014. The results show that the snowfall event were occurring after the GPS precipitable water vapor were increased, the maximum fresh snow depth was recorded after the maximum GPS precipitable water vapor was generated, in Kangneug and Wuljin, respectively. Also, we analyzed that the closely correlation among the GPS precipitable water vapor, the K-index and total index which was acquired by the upper air observation system during this snowstorm event was revealed.