• Title/Summary/Keyword: 상수역학

Search Result 204, Processing Time 0.025 seconds

Mechanical Properties of Lightweight Aggregate Concrete according to the Substitution Rate of Natural Sand and Maximum Aggregate Size (천연모래 치환율과 경량 굵은 골재 최대 크기에 따른 경량 골재 콘크리트의 역학적 특성)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • The effect of the maximum aggregate size and substitution rate of natural sand on the mechanical properties of concrete is evaluated using 15 lightweight aggregate concrete mixes. For mechanical properties of concrete, compressive strength increase with respect to age, tensile resistance, elastic modulus, rupture modulus, and stress-strain relationship were measured. The experimental data were compared with the design equations specified in ACI 318-08, EC2, and/or CEB-FIP code provisions and empirical equations proposed by Slate et al., Yang et al., and Wang et al. The test results showed that compressive strength of lightweight concrete decreased with increase in maximum aggregate size and amount of lightweight fine aggregates. The parameters to predict the compressive strength development could be empirically formulated as a function of specific gravity of coarse aggregates and substitution rate of natural sand. The measured rupture modulus and tensile strength of concrete were commonly less than the prediction values obtained from code provisions or empirical equations, which can be attributed to the tensile resistance of lightweight aggregate concrete being significantly affected by its density as well as compressive strength.

Physical and Mechanical Properties of Cements for Borehole and Stability Analysis of Cement Sheath (관정 시멘팅 재료의 물리역학물성 및 시멘트층의 안정성 분석)

  • Kim, Kideok;Lee, Hikweon;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • We carried out laboratory material tests on two cements (KS-1 ordinary Portland and Class G) with changing W/S (Water/Solid) and the content of fly ash in order to evaluate their physical and mechanical properties. The specimens of KS-1 ordinary Portland cement were prepared with varying W/S (Solid=cement) in weight, while those of Class G cement were prepared with changing the content of fly ash in volume but maintaining W/S (Solid=cement+fly ash). The results of the material tests show that as the W/S in KS-1 ordinary Portland cement and the content of fly ash in Class G cement increase, the properties (density, sonic wave velocity, elastic constants, compressive and tensile strengths, thermal conductivity) decrease, but porosity and specific heat increase. In addition, an increase in confining pressure and in the content of fly ash leads to plastic failure behavior of the cements. The laboratory data were then used in a stability analysis of cement sheath for which an analytical solution for computing the stress distribution induced around a cased, cemented well was employed. The analysis was carried out with varying the injection well parameters such as thickness of casing and cement, injection pressure, dip and dip direction of injection well, and depth of injection well. The analysis results show that cement sheath is stable in the cases of relatively lower injection pressures and inclined and horizontal wells. However, in the other cases, it is damaged by mainly tensile failure.

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon (활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.679-686
    • /
    • 2019
  • Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

한국 작업자의 요통예방을 위한 작업하중 설계지침

  • 이관석;박희석;서치원
    • Proceedings of the ESK Conference
    • /
    • 1995.04a
    • /
    • pp.97-105
    • /
    • 1995
  • 본 연구의 목적은 드는 작업에 있어서 한국 작업자의 적정하중을 구하여 중량물 안전기준을 정하는 것이다. 본 연구에서는 주어진 작업조건하에서 피실험자가 들어올릴 수 있는 적정하중을 결정하기 위 한 기준으로서 피실험자 자신에 의해서 인지되는 스트레스 정도를 이용하는 심리육체적 방법(Psychophysical method), 주어진 작업조건하에서 요추에 가해지는 압력을 이용하는 생체역학적 방법(Biomechanical method), 주어진 작업조건하에서 피실험자의 에너지 소모량을 이용하는 생리학적 접근법등이 이용되었다. 피실험자는 학생(n=3) 두개의 군으로 나뉘어진다. 실험에 들어가기 전에 피실험자에 대한 인체측정과 근력측정을 수행 하였다. 실험은 수직면에서 드는 빈도(1,2, 와 4회/분)와 드는 높이(0-8cm 와 47-102cm)를 조합한 6가지의 작업을 무작위로 선택하여 심리육체적 방법으로 각 작업에 대한 적정하중을 구하였다. 연구결과로서 피실험 자의 신체자료와 근력의 비교로부터 신체조건은 학생이 우수하였으나, 근력은 작업자가 우수하였다. 본 연구 에서 채택된 들기의 빈도가 변함에 따라 최대허용 하중은 변하였다. 작업자군에 대하여는 빈도가 증가할수록 최대허용 하중은 감소하였으며, 학생군에 대하여는 분당 1회와 분당 4회간의 유의한 차이가 있었다. 들기의 시작-종점의 변화에따른 최대허용 하중은 통계적으로 유의하지 않았다. 위의 두 결과는 들기의 빈도가 들기의 시작-종점보다 민감한 변수임을 가리키며 이는 미국 NIOSH의 결과와 일치한다. 심리육체적 방법을 사용하여 우리나라의 젊고 건강한 남성의 대부분(99%)을 고려하여 산출된 최대허용 하중은 미국 NIOSH 안전기준과 큰 차 이가 없음을 발견하였다. 또한 이 최대허용 하중은 인체역학적방법과 생리학적 방법을 사용하여 검토한 결과, 무리가 없는 수준임이 입증되었다. 본 연구의 결과를 토대로우리나라 젊고 건강한 남성에게 적합한 무게상수는 작업자군에 대하여 25.05kg, 학생군에 대하여 20.24kg 으로 나타나 이는 미국 NIOSH 안전기준과 대체로 일치함을 발견하였다.

  • PDF

Thermodynamic Study on the Mixed Micellization of Cationic Surfactants DPC and TTAB (양이온 계면활성제인 DPC와 TTAB의 혼합마이셀화에 대한 열역학적 고찰)

  • Lee, Byung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.614-620
    • /
    • 1999
  • The critical micelle concentration (CMC) and the counterion binding constant (${\beta}$) at the CMC of the mixtures of Dodecylpyridinium chloride (DPC) and Tetradecyltrimethylammonium bromide (TTAB) have been determined from the concentration dependence of electrical conductance at various temperatures from $4^{\circ}C$ to $36^{\circ}C$. Thermodynamic parameters (${\Delta}C_p$, ${\Delta}G^o_m$, ${\Delta}H^o_m$ and ${\Delta}S^o_m$), associated with the micelle formation of DPC/TTAB mixtures, have been estimated from the temperature dependence of CMC and ${\beta}$values. The measured values of ${\Delta}C_p$ and ${\Delta}G^o_m$ are negative but the values of ${\Delta}S^o_m$ are positive in the whole measured temperature region. The values of ${\Delta}H^o_m$ are positive at low temperature region and negative at high temperature region. The results show that all of the thermodynamic parameters are dependent on temperature and mole fraction of DPC(${\alpha}_DPC$).

  • PDF

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Strength Prediction of Cement-Admixed using Low Plasticity Silt (저소성실트를 이용한 시멘트 혼합토의 강도 예측)

  • Park, Jongchan;Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Park, Kyunghan;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.31-38
    • /
    • 2014
  • For analysis of mechanics properties of soil cement, unconfined compressive strength has been proposed by existing case studies. In this study, mechanical changes with water content of silt, curing time and cement content were analyzed through unconfined compressive strength test. In addition, the changes for B factor by Abrams were compared with existing case studies after the prediction equations could be proposed about the unconfined compressive strength of admixed cement soil. Especially, the B constant factor was changed with soil characteristics and curing time. For analysis results of appropriateness status and unconfined compressive strength, consideration of variable form was titrated. The prediction equations at low plasticity silt admixed using the uniaxial compressive strength with applying Abrams's equation and considering cement content, curing time is proposed.

Size Effect of Concrete Structures without Initial Cracks (초기균열이 없는 콘크리트 구조물의 크기에 따른 응력감소효과에 관한 연구)

  • Kim, Jin Keun;Park, Hong Kyee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 1987
  • In most of the structural members with initial cracks, the strength tends to decrease as the member size increases. This phenomenon is known as size effect. Among the structural materials of glass, metal or concrete, etc., concrete represents the size effect even without initial crack. According to the previous size effect law, the concrete member of very large size can resist little stress. Actually, however, even the large size member can resist some stress if there is no initial notch. This means that the fracture mechanism of very small or very large size member follows strength criterion, but the medium size member follows non-linear fracture mechanics (NLFM). In this study, the empirical models which are derived based on nonlinear fracture mechanics are proposed according to the regression analysis with the existing test data of large size specimens for uni-axial compression test, splitting tensile test and shear test of reinforced concrete beams.

  • PDF

Thermodynamics on the Mixed Micellization of Sodium Dodecylsulfate(SDS) with Sodium Dodecylbenzenesulfonate(DBS) in Pure Water (순수 물에서 Sodium Dodecylsulfate(SDS)와 Sodium Dodecylbenzenesulfonate(DBS)의 혼합미셀화에 대한 열역학적 고찰)

  • Lee, Byung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.420-426
    • /
    • 1996
  • The critical micelle concentration(CMC) and the counterion binding $constant(\beta)$ at the CMC of the mixtures of Sodium dodecylsulfate(SDS) with Sodium dodecylbenzenesulfonate(DBS) in aqueous solutions have been determined from the concentration dependence of electrical conductance at several temperatures from $15^{\circ}C$ to $35^{\circ}C.$ Thermodynamic parameters(${\Delta}C_p,\;{\Delta}G_m^{\circ},\;{\Delta}H_m^{\circ}$${\Delta}S_m^{\circ}$ and ${\Delta}C_p$), associated with the micelle formation of SDS/DBS mixtures, have been estimated from the temperature dependence of CMC and $\beta$ values. The measured values of ${\Delta}G_m^{\circ}\;and\;{\Delta}C_p$ are negative but the values of ${\Delta}S_m/^{\circ}$ are positive in the whole measured temperature region. The significance of these thermodynamic parameters and their relation to the theory of the micelle formation of SDS/DBS mixtures have been also considered.

  • PDF