• Title/Summary/Keyword: 상세화학반응기구

Search Result 9, Processing Time 0.025 seconds

A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether (디메틸 에테르 착화에 관한 반응기구 축소 연구)

  • Ryu, Bong-Woo;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The numerical analysis of the reduction of reaction mechanism for the ignition of dimethyl ether (DME) was performed. On the basis of a detailed reaction mechanism involving 79 species and 351 reactions, the peak molar concentration and sensitivity analysis were conducted in a homogeneous reactor model. The reduced reaction mechanism involving 44 species and 166 reactions at the threshold value $7.5{\times}10^{-5}$ of the molar peak concentration was established by comparing the ignition delays the reduced mechanism with those the detailed mechanism. The predicted results of the reduced mechanism applied to the single-zone homogeneous charge compression ignition (HCCI) engine model were in agreement with those of the detailed mechanism. Therefore, this reduced mechanism can be used to accurately simulate the ignition and combustion process of compression ignition engine using DME fuel.

Detonation Wave Simulation of Thermally Cracked JP-7 Fuel/Oxygen Mixture using Induction Parameter Modeling (Induction Parameter Modeling을 이용한 열 분해된 JP-7 연료 /산소 혼합기의 데토네이션 파 해석)

  • Cho, Deok-Rae;Shin, Jae-Ryul;Choi, Jeong-Yeol;Yang, Vigor
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • The detonation wave characteristics of JP-7 and oxygen mixture is investigated by one-step induction parameter model (IPM) obtained from a detailed chemistry mechanism. A general procedure of obtaining reliable one-step kinetics IPM for hydrocarbon mixture from the fully detailed chemistry is described in this study. The IPM is obtained by the reconstruction of the induction time database obtained from a detailed kinetics library. The IPM was confirmed by the comparison of the induction time calculations with that from detailed kinetics. The IPM is later implemented to a fluid dynamics code and applied for the numerical simulation of detonation wave propagation. The numerical results show the detailed characteristics of the detonation wave propagation in JP-7 and oxygen mixture at affordable computing time, which is not be possible by the direct application of the detailed chemical kinetics mechanism of hydrocarbon fuel combustion.

CO Formation Characteristics in Under-ventilated Fire Conditions using a PSR (Perfectly Stirred Reactor) (완전혼합반응기(PSR)를 이용한 환기부족화재조건에서 CO의 생성특성)

  • Hwang, Hae-Joo;Hwang, Cheol-Hong;Park, Chung-Hwa;Oh, Chang-Bo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.34-37
    • /
    • 2012
  • 환기부족 구획화재에서 CO의 생성은 온도 및 조성에 큰 영향을 받으며, 구획 내의 체류시간 및 이동경로에 따라 복잡한 현상을 경험하게 된다. 그 결과 구획 내부의 CO 생성특성을 실험을 통해 상세하게 규명하는 것은 많은 한계가 있다. 이러한 배경 하에 본 연구에서는 환기부족 구획화재의 조건에서 총괄당량비에 따른 CO의 생성특성에 관한 수치해석 연구를 수행하였다. PSR(완전혼합반응기) code와 헵탄연료의 상세화학반응기구가 사용되었다. 주요 변수로서 체류시간, 온도, 반응물과 생성물의 혼합정도 그리고 열손실 등이 CO의 생성에 미치는 독립적 영향을 검토하였다. 추가로 주요반응에 의한 CO의 몰 생성률 및 소모율과 CO의 반응경로 분석을 통해 환기부족 구획화재의 조건에서 구체적인 CO 생성특성에 관한 이해가 시도되었다.

  • PDF

Modeling of Laminar Burning Velocities for Hydrocarbon and 7ethanol Fuels by Using Detailed Chemical Reaction Mechanisms (상세화학반응기구를 이용한 탄화 수소 및 메탄을 층류 화염 속도 모델링)

  • Bae, Sang-Su;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1303-1310
    • /
    • 2001
  • In order to be applicable to the combustion modelling of stratified charged combustion like that of - lean burn and GDI engine, the correlations of laminar burring velocities fur several hydrocarbon fuels and methanol are needed over a wide range of equivalence ratio, pressure and temperature. In this study, these correlations are modeled in the 1311owing form based on the experimental and Muller\`s modeling results for several fuels, where $\alpha$, ξ, and ξ are functions of pressure and temperature, $S_{L}$ =$\alpha$ exp[-ξ($\Phi$-$\Phi$$_{m}$)$^{2}$ -exp {-ζ($\Phi$-$\Phi$$_{m}$)}-ζ($\Phi$-$\Phi$$_{m}$)]. By using the results calculated by PREMIX code with Sloane\`s detailed chemical reaction mechanism for propane, it is verified that the coefficients of the abode modeling can be determined by considering laminar burning velocity data only in a range of equivalence ratio less than $\Phi$$_{m}$. Therefore, Muller\`s modeling results can be adopted leer modeling of the pressure and temperature dependency. Compared with the results of the existing Keck'and Gulder's models, those of the present one showed the good agreement of the recent experimental data, especially in the range of lean and rich sides.s.des.s.

Laminar Burning Velocities of Propane and Iso-Octane Fuels for Stratified Charged Combustion Modeling (성층화 혼합기 연소 모델링을 위한 프로판 및 이소옥탄 연료의 층류 화염 속도)

  • Pae, Sang-Soo;Kim, Yong-Tae;Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.704-709
    • /
    • 2000
  • Laminar burning velocities of propane- and iso-octane-air mixtures have been numerically modelled over a wide range of equivalence ratio, pressure and temperature. These correlations are applicable to the modelling of stratified charged combustion like that of lean bum and GDI engine combustion. The numerical models are based on the results calculated by PREMIX code with Sloane's detailed chemical reaction mechanism for propane and FlameMaster code with Peters' for iso-octane. Laminar burning velocity for two fuels showed a pressure and temperature dependence in the following form, in the range of $0.1{\sim}4MPa$, and $300{\sim}1000K$, respectively. $S_L={\alpha}\;{\exp}[-\xi({\phi}-{\phi}_m)^2-{\exp}\{-{\xi}({\phi}-{\phi}_m)\}-{\xi}({\phi}-{\phi}_m)]$ where ${\phi}_m=1.07$, and both of ${\alpha}$ and ${\xi}$ are functions of pressure and temperature. Compared with the results of the existing models, those of the present one showed the good agreement of the recent experiment data, especially in the range of lean and rich sides. Judging from the calculated results of the stratified charged combustion by using STAR-CD, the above modelling prove to be more suitable than the other ones.

  • PDF

Detonation Wave Propagation Through a T-type Branch Tube in Combustion Wave Rocket Igniter (연소파 로켓 점화기의 T형 분기관내 데토네이션파 전파)

  • ;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.221-224
    • /
    • 2003
  • A numerical study is carried out for the detonation wave propagation through a T-branch. The T-branch is a crucial part of the combustion wave igniter, a novel concept of rocket ignition system aimed for the simultaneous ignition of multiple combustion chambers by delivering detonation waves. Euler equation and induction parameter equation are used as governing equations with a reaction term modeled from the chemical kinetics database obtained from a detailed chemistry mechanism. Second-order accurate implicit time integration and third-order space accurate TVD algorithm were used for solution of the coupled equations. Over two-million grid points enabled the capture of the dynamics of the detonation wave propagation including the degeneration and re-initiation phenomena, and some of the design factors were be obtained for the CWI flame tubes.

  • PDF

Skeletal Chemical Mechanisms for a Diesel Fuel Surrogate by the Directed Relation Graph(DRG) (직접 관계 그래프(DRG)를 이용한 디젤 연료의 상세 화학 반응 기구 축소화)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • It is a challenging task to apply large detailed chemical mechanisms of fuel oxidation in simulation of complex combustion phenomena. There exist a few systematic methodologies to reduce detailed chemical mechanisms to smaller sizes involving less computational load. This research work concerns generation of a skeletal chemical mechanism by a directed relation graph with specified accuracy requirement. Two sequential stages for mechanism reduction are followed in a perfectly stirred reactor(PSR) for high temperature chemistry and to consider the autoignition delay time for low and high temperature chemistry. Reduction was performed for the detailed chemical mechanism of n-heptane consisting of 561 species and 2539 elementary reaction steps. Validation results show acceptable agreement for the autoignition delay time and the PSR calculation in wide parametric ranges of pressure, temperature and equivalence ratio.

Radiation Effects on the Ignition and Flame Extinction of High-temperature Fuel (고온연료의 점화 및 화염 소화특성에 미치는 복사효과)

  • Kim, Yu Jeong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.50-56
    • /
    • 2013
  • The radiation effects on the auto-ignition and extinction characteristics of a non-premixed fuel-air counterflow field were numerically investigated. A detailed reaction mechanism of GRI-v3.0 was used for the calculation of chemical reactions and the optically-thin radiation model was adopted in the simulations. The flame-controlling continuation method was also used in the simulation to predict the auto-ignition point and extinction limits precisely. As a result, it was found that the maximum H radical concentration, $(Y_H)_{max}$, rather than the maximum temperature was suitable to understand the ignition and extinction behaviors. S-, C- and O-curves, which were well known from the previous theory, were identified by investigating the $(Y_H)_{max}$. The radiative heat loss fraction ($f_r$) and spatially-integrated heat release rate (IHRR) were introduced to grasp each extinction mechanism. It was also found that the $f_r$ was the highest at the radiative extinction limit. At the flame stretch extinction limit, the flame was extinguished due to the conductive heat loss which attributed to the high strain rate although the heat release rate was the highest. The radiation affected on the radiative extinction limit and auto-ignition point considerably, however the effect on the flame stretch extinction limit was negligible. A stable flame regime defined by the region between each extinction limit became wide with increasing the fuel temperature.

A Numerical Study on the Extinguishing Effects of CO2 in Counterflow Diffusion Flames with the Concept of Local Application System (국소방출방식 개념의 대향류 확산화염에서 CO2 소화효과에 관한 수치해석 연구)

  • Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Oh, Chang-Bo
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2012
  • The suppression mechanisms of carbon dioxide ($CO_2$) as a representative fire suppression agent were revisited using a counterflow diffusion flame which could be applied the concept of a local application system. To end this, the low strain rate $CH_4$/air counterflow diffusions with $CO_2$ addition in either fuel or oxidizer stream were examined numerically using detailed-kinetic chemistry. Radiative heat loss due to radiating gas species including $CO_2$ added was considered by the optically thin model (OTM). As a result, the critical $CO_2$ volume fractions in the oxidizer stream required to extinguish the flame were in good agreement with the experimental data reported in the literature, while somewhat under-prediction was observed with $CO_2$ added in the fuel stream. The surrogate agents were adopted to estimate the quantitative contribution with changing in global strain rate ($a_g$) on the flame extinguishment among pure dilution effect, thermal effects including radiation heat loss and chemical effect due to the $CO_2$ fire suppression agent.