• Title/Summary/Keyword: 상부층 전단벽

Search Result 12, Processing Time 0.025 seconds

The Response Characteristics of Push-over and Nonlinear Time History Analysis with Variations in the Upper Stories of the Mixed Building Structure (복합구조물의 상부층수 변화에 따른 탄소성 정적 및 동적 응답특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.73-83
    • /
    • 2001
  • The mass and stiffness of upper wall-lower frame system(mixed building structures) change sharply at transfer floor due to different structural system in upper and lower part. These mixed building structures generally show the stiffness, weight or geometric vertical irregularities. The purpose of this study is to investigate the response characteristics of these structures by push-over analysis and nonlinear time history analysis. For four types of analysed models, only the variation of upper wall stories was considered. The conclusions of this study are following; (1) In the push-over analysis, yielding hinges in beams and columns of lower frame occurred at the base shear of similar magnitude in all models. But as the number of stories of upper wall increases, yielding hinges at ends of coupling beams were observed in the small magnitude of base shear. (2) In the nonlinear time history analysis, yielding of lower frame occurred at beams with as small ground acceleration as 55gal, and in upper walls yielding was concentrated on coupling beams and shear walls near the transfer floor. (3) As the number of stories of upper walls decreases, the story stiffness of the lower frames decreased relatively and the occurrence of soft stories in the lower frame was observed.

  • PDF

Required Strength Spectrum of Low-Rise Reinforced Concrete Shear Wall Buildings with Pilotis (필로티 구조를 가진 저층 철근콘크리트 전단벽식 건물의 요구내력 스펙트럼)

  • Lee, Kang-Seok;Oh, Jae-Keun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.61-69
    • /
    • 2007
  • The main purpose of this study is to provide a basic information for the seismic capacity evaluation and the seismic design of low-rise reinforced concrete (RC) shear wall buildings, which are comprised of a pilotis in the first story. In this study, relationships between strengths and ductilities of each story of RC buildings with pilotis are investigated based on the nonlinear seismic response analysis. The characteristics of low-rise RC buildings with pilotis are assumed as the double degree of freedom structural systems. In order to simulate these systems, the pilotis is idealized as a degrading trilinear hysteretic model that fails in flexure and the upper story of shear wall system is idealized as a origin-oriented hysteretic model that fails in shear, respectively. Stiffness properties of both models are varied in terms of story shear coefficients and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of required strengths for various levels of ductility factors are finally derived for practical purposes. The result indicates that the required strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete shear wall buildings having pilotis structure.

Behavior Analysis According to the Shear Wall Layout of Column-Supported Wall System Subject to Vertical and Lateral Loads (연직 및 횡하중이 작용하는 상부벽식-하부골조구조물의 벽체 배치유형에 따른 거동 해석)

  • Lee, Dae-Hyeon;Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.53-61
    • /
    • 2004
  • Recently, most of residential-commercial buildings and apartment houses which are being constructed in the downtown area mainly adopt hybrid structural systems to compose various spaces. Especially, column-supported wall system which is one of the hybrid systems includes shear wall and rigid frame structure and these structures are connected by the transfer floor. But this system is very disadvantageous from the viewpoint of structural safety and is difficult to find out the stress distribution at the transfer floor. Therefore, this study analyzes the behavior and stress distribution according to the shear wall layout of transfer girder system subject to vertical and static lateral loads. Also, this study recognizes load paths and stress concentration based on the analysis results nearby the transfer floor and presents guidelines for the effective design of wall and transfer girder.

  • PDF

Behavior of Coupling Shear Wall with New Openings (개구부 신설에 따른 병렬 전단벽의 거동특성)

  • Choi, Hyun-Ki;Choi, Youn-Cheul;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.152-160
    • /
    • 2008
  • Since wall system apartment used the shear wall as main lateral resistance member, installation of openings which causing section loss of walls may cause significant problem to structure. Also, there are few studies for inducing coupling beam or slabs which are occurred by installing openings. Therefore, this study planned isolated 2-story shear walls which are reduced three half-scale specimen to find out walls behavior characteristic. The test results showed that strength reduction caused by loss of effective section of walls and different result of stiffness and energy dissipation regarding to the coupling beam and coupling slabs.

Natural Period Estimation for the Buildings of Upper Wall and Lower Frame Type (상부벽식-하부골조를 가진 복합구조물의 고요주기예측)

  • 박기수;김희철;김종헌
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.1-13
    • /
    • 2000
  • 상부벽식 하부골조를 가진 복합구조물은 부족한 대지를 효율적으로 활용하기 위하여 건설되고 있다. 이러한 복합건물은 상부벽식-하부골조를 가지는 구조로써 일반적으로 전이보 또는 전이판으로 상하부를 연결하고 있다. 따라서 상하부 구조사이의 강성과 질량에 많은 차이가 발생하게 된다. 구보물의 고유주기는 지진하중과 밑면전단력을 결정하기 위한 중요한 변수이다. 그러나 현재 국내 규준에서 제안하는 고유주기 산정식은 이러한 건물에는 적용할 수 없다. 본 연구에서는 상부벽식-하부골조를 가진 복합구조물의 고유주기의 산정에 영향을 미치는 변수들 중 가장 큰 영향을 미치는 건물의 상하부 층수에 따른 변수만을 고려하여 고유주기산정식을 제안하였다. 하부는 2~5개 층을 가지고, 상부는 10~18개 층을 가지는 15~20층의 건물이면 정형적인 평면을 가지는 복합구조물로 한정하였다. 건물 내부의 채움벽에 대한 효과를 고려한 고유주기 제안식은 다음과 같다. 장변 방향 : $T_{L}$=($0.20H_{h}+0.05H_{i}$)/$sqrt{B}$-0.42 단변 방향 :$T_{S}$=($0.07H_{h}+0.12H_{i}$)/$sqrt{B}$-0.40

  • PDF

Efficient Analysis of Shear Wall with Piloti (필로티가 있는 전단벽의 효율적인 해석)

  • 김현수;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.387-399
    • /
    • 2003
  • The box system that consists only of reinforced concrete walls and slabs we adopted in many high-rise apartment buildings recently constructed in Korea. Recently, many of the box system buildings with pilotis has been constructed to meet the architectural design requirements. This structure has abrupt change in the structural properties between the upper and lower parts divided by transfer girders. For an accurate analysis of a structure with pilotis, it is necessary to have the buildings modeled into a finer mesh. But it would cost tremendous amount of computational time and memory. In this study, an efficient method is proposed for an efficient analysis of buildings those have pilotis with drastically reduced time and memory. In the proposed analysis method, transfer gilders are modeled using super elements developed by the matrix condensation technique and fictitious beams are introduced to enforce the compatibility conditions at the boundary of each element. The analyses of example structures demonstrated that the proposed method used for the analysis of a structure with pilotis will provide analysis results with accuracy for the design of box system buildings.

Efficient Analysis for the Hybrid Structural Systems with Upper Shear-Wall and Lower Frames (상부전단벽과 하부골조로 구성된 복합구조 시스템의 효율적 해석)

  • 장극관;안태상
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.441-451
    • /
    • 2002
  • Recently, Increasing residential-commercial buildings are composed of upper wall and lower frame type. As structural fragility, a large numbers of researchers have tried to develope the efficient analysis methods. But these studies were too theoretical and were not considered the lateral load which was required in analysing the transfer level in addition to being used nonlinear program which was difficult to use for practical design. thus, results of these studies we not appropriate to apply practical design, therefore, in this paper, the procedure of the current design practice were compared with that of used FEM method and presented new modeling method. in particular, an efficient analytical model which can be used in practical design of residential-commercial buildings for vortical and seismic loads was proposed and the usefulness of proposed model was verified.

The Nonlinear Behavior Characteristics of the 3D Mixed Building Structures with Variations in the Lower Stories (입체 복합구조물의 하부골조 층수 변화에 따른 비선형 거동특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • The upper wall-lower frame structures(mixed building structures) are usually composed of shear wall structure in the upper part of structure which is used as residential space and frame structure in the lower part of structure which is used as commercial space centering around the transfer system in the lower part of structure. These structures are characteristics of stiffness irregularity, mass irregularity, and vertical geometric irregularity. The purpose of this study is to investigate the nonlinear response characteristics and the seismic capacity of mixed building structures when the number of stories in the lower frame is varied. The conclusions of this study are following. 1) As the result of push-over analysis of structure such as roof drift(i.e. roof displacement/structural height) and base shear coefficient, when the stories of lower frame system are increased, base shear coefficient is decreased, but roof drift is increased. 2) According to an increase in stories of the lower fame, story drift and ductility ratio of upper wall system are decreased and behavior of upper wall system is closed to elastic. 3) When the stories of lower frame system are increased, the excessive story drift is concentrated on the lower frame system.

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings (필로티형 고층 RC건물의 비선형시간이력해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.