• Title/Summary/Keyword: 상보형 금속 산화물 반도체

Search Result 2, Processing Time 0.021 seconds

Switched SRAM-Based Physical Unclonable Function with Multiple Challenge to Response Pairs (스위칭 회로를 이용한 다수의 입출력 쌍을 갖는 SRAM 기반 물리적 복제 불가능 보안회로)

  • Baek, Seungbum;Hong, Jong-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1037-1043
    • /
    • 2020
  • This paper presents a new Physical Unclonable Function (PUF) security chip based on a low-cost, small-area, and low-power semiconductor process for IoT devices. The proposed security circuit has multiple challenge-to-response pairs (CRP) by adding the switching circuit to the cross-coupled path between two inverters of the SRAM structure and applying the challenge input. As a result, the proposed structure has multiple CRPs while maintaining the advantages of fast operating speed and small area per bit of the conventional SRAM based PUF security chip. In order to verify the performance, the proposed switched SRAM based PUF security chip with a core area of 0.095㎟ was implemented in a 180nm CMOS process. The measurement results of the implemented PUF show 4096-bit number of CRPs, intra-chip Hamming Distance (HD) of 0, and inter-chip HD of 0.4052.

Micro-CT System for Small Animal Imaging (소동물영상을 위한 마이크로 컴퓨터단층촬영장치)

  • Nam, Ki-Yong;Kim, Kyong-Woo;Kim, Jae-Hee;Son, Hyun-Hwa;Ryu, Jeong-Hyun;Kang, Seoung-Hoon;Chon, Kwon-Su;Park, Seong-Hoon;Yoon, Kwon-Ha
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.102-112
    • /
    • 2008
  • We developed a high-resolution micro-CT system based on rotational gantry and flat-panel detector for live mouse imaging. This system is composed primarily of an x-ray source with micro-focal spot size, a CMOS (complementary metal oxide semiconductor) flat panel detector coupled with Csl (TI) (thallium-doped cesium iodide) scintillator, a linearly moving couch, a rotational gantry coupled with positioning encoder, and a parallel processing system for image data. This system was designed to be of the gantry-rotation type which has several advantages in obtaining CT images of live mice, namely, the relative ease of minimizing the motion artifact of the mice and the capability of administering respiratory anesthesia during scanning. We evaluated the spatial resolution, image contrast, and uniformity of the CT system using CT phantoms. As the results, the spatial resolution of the system was approximately the 11.3 cycles/mm at 10% of the MTF curve, and the radiation dose to the mice was 81.5 mGy. The minimal resolving contrast was found to be less than 46 CT numbers on low-contrast phantom imaging test. We found that the image non-uniformity was approximately 70 CT numbers at a voxel size of ${\sim}55{\times}55{\times}X100\;{\mu}^3$. We present the image test results of the skull and lung, and body of the live mice.

  • PDF