• Title/Summary/Keyword: 상동광산광미

Search Result 15, Processing Time 0.029 seconds

Properties of Compressive Strength of Mortar Mixed with Tailings from the Sangdong Tungsten Mine for Soil Pavement (상동광산 광미를 혼합한 흙도로 포장용 모르타르의 압축강도 특성)

  • Choi, Yun-Wang;Jung, Moon-Young;Jung, Myung-Chae;Jung, Jea-Gwon
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.05a
    • /
    • pp.224-227
    • /
    • 2005
  • 본 연구에서는 국내 폐금속광산의 대표적인 폐기물 중 상동광산광미를 안정화, 고형화 및 감량화 시키기 위한 일환으로 광미를 실용적인 흙도로 포장재료로 사용하기 위한 모르타르 실험을 실시하였다. 모르타르에 사용된 고화제는 시멘트계 고화제를 사용하였으며, 상동광미는 대상 흙에 대하여 10% 중량비 치환한 경우 강도증진 효과가 있었다 따라서 상동광미를 흙도로용 포장재료로 사용할 수 있는 가능성을 얻을 수 있었다.

  • PDF

Availability Review of Tailings from the Sangdong Tungsten Mine as a Material for Construction (건설용 재료로서 상동광산광미의 활용성 검토)

  • Kim, Yong-Jic;Kim, Young-Jin;Choi, Yun-Wang;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.204-210
    • /
    • 2013
  • This study has focused on the possibility for recycling tailings from the Sangdong tungsten mine (TA) as admixture for concrete. TA has been accumulating for several decades in Sangdong, a region in Korea, and there is a growing demand for alternative uses for this hazardous substance. In particular, the use must be in accordance with the hazardous materials stipulations under the Korean waste control act. This study showed that TA presented pH of 8.0-9.3, 18.7-22.0% of water content, 2.7% of maximum ignition loss. The chemical composition of TA showed minute differences from each depth of sampling that represented approximately 50% of $SiO_2$ and 13% of both $Al_2O_3$ and $Fe_2O_3$. The chemical composition of Cd, Cu, Zn and Pb from mortar incorporating TA showed lower levels of hazardous materials which met the specifications of the waste control act in Korea. The TA mortar also appeared very effective for stabilizing/solidifying heavy metals particularly when used in conjunction with SG.

The Quality Properties of Mortar for Using Tailings from the Sangdong Tungsten One as Admixture for Concrete (상동광산 광미를 콘크리트용 혼화재료로 사용하기 위한 모르타르의 품질특성)

  • Choi Yun-Wang;Jung Moon-Young;Jung Myung-Chae;Koo Gi-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.383-390
    • /
    • 2004
  • This study has focused on the possibility for recycling tailings from the Sangdong tungsten mine as admixture for concrete. The XRD(X-ray diffraction analysis) and PSA(Particle size analysis) were performed to find mineralogical characteristics. As a result of XRD analysis, the tailings from the Sangdong tungsten fine were composed of quartz, chlorite, anorthite and cordierite etc. As a result of KSLT for cement mortar mixed with tailings from the Sangdong tungsten mine, most of heavy metals were determined as below the guide line for waste material. In addition, the setting time and compressive strength of cement mortar mixed with tailings from the Sangdong tungsten mine were investigated. It was indicated that the initial and final set were retarded according to increasing replacement of tailings from the Sangdong tungsten mine. The compressive strength of mortar was decreased with increasing replacement of failings from the Sangdong tungsten mine.

A Study on Fractions and Leaching Potential of Heavy Metals in Abandoned Mine Wastes (휴ㆍ폐광산지역에서 폐재내 중금속의 존재형태 및 용출특성에 관한 연구)

  • 김휘중;양재의;이재영;전상호
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.45-55
    • /
    • 2003
  • This study investigates the fractional composition and the leaching characteristics of heavy metals in polluted soils due to mining activities. The fractionated composition of heavy metals is classified into five fractions; adsorbed, carbonate, reducible, organic and residual fraction. The status of humic substances in mine wastes of most sites are polyhumic except tailing from Sangdong mine. According to the sequential extraction procedures (SEPs), leaching probabilities of Cd in coal wastes and tailing are relatively low due to high percentage of residual fraction. 46.4% of Ni in tailings from Sangdong mine is probably leached under oxidized environment, and 39.4% of Cu in these tailings is readily extracted under strongly oxidized environment by organic fraction. According to leaching condition of pH 3.0 and pH 5.6, the amount of heavy metals leached out of coal wastes and tailing increases to 1/2 hours. At pH 3.0 and pH 5.6, concentration of Ni in tailing increases up three times of the initial value. Heavy metals released from coal wastes and tailing were not influenced significantly by leaching time.

The Quality Properties of Self-Compacting Concrete Mixed with Tailing from the Sangdong Tungsten Mine (상동광산 광미를 혼합한 자기충전 콘크리트의 품질 특성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.777-783
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder(TA) of self-compacting concrete(SCC). The experimental tests for slump-flow, time required to reach 500 mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The results of this study, slump-flow of SCC was satisfied a prescribed range. And time required to reach 500 mm of slump flow(sec) and time required to flow through V-funnel(sec) decreased with increasing replacement of TA. But filling height of U-box test(mm), replacement of TA up to 30% were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standards(KS). The compressive strength of SCC decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete. The fundamental durability was reviewed through the dry shrinkage rate and accelerated carbonation tests. As the result dry shrinkage rate and accelerated carbonation depth increased with increasing replacement of TA.

Flowability and Strength of Self-compacting Concrete Mixed with Tailings from the Sangdong Tungsten Mine (상동관상 광미를 혼합한 자기충전콘크리트의 유동 및 강도 특성)

  • Choi, Yun Wang;Kim, Yong Jic;Jung, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.767-774
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the sangdong tungsten mine as powder (TA) of self-compacting concrete (SCC). The experimental tests for entrapped water ratio were carried out in accordance with the specified method by Okamura. The rheological measurements of cement paste were conducted by using a commercially digital Brookfield viscometer (Model LVDV-II+) equipped with cylindrical spindles, also tests for slump-flow, time required to reach 500 mm of slump flow (sec), time required to flow through V-funnel (sec) and filling height of U-box test (mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering (JSCE). The results of this study, entrapped water ratio was decreased with increasing replacement of TA. Thickness of pseudo water film was increased, and mean plastic viscosity was decreased with increasing replacement of TA. And slump-flow of SCC was decreased with increasing replacement of TA. But time required to reach 500 mm of slump flow (sec), time required to flow through V-funnel (sec) and filling height of U-box test (mm) were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standard (KS). The compressive strength of SCC was decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete.

Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province (강원도 폐금속광산지역의 광미와 주변토양의 중금속 오염현황 및 오염도 평가)

  • Kim, Joung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.626-634
    • /
    • 2005
  • The objectives of this study was to assess pollution level and contamination status on tailings and soil in the vicinity of four disused metal mines in Kangwon province. As the result of total metal concentrations analysis, the pollution degree of tailings and soil decreased in the order of Wondong > Second Yeonhwa > Sinyemi ${\fallingdotseq}$ Sangdong mines. Total metal concentrations of mine tailings in this study were $1.2{\sim}78.2$ and $1.1{\sim}80.6$ times higher than those in the background soil and the tolerable levels suggested by Kloke, respectively. From these results, we found that tailings served as contamination source of nearby soil. According to sequential extraction of metals, large proportion of heavy metals in all mine tailings existed in the form of a residual fraction, and heavy metals in non-residual form was mainly associated with Fe-Mn oxide fraction and sulfidic-organic fraction. Fe-Mn oxide fraction and sulfidic-organic fraction of heavy metals may be released into and contaminated the nearby environment under the oxidation or reduction condition in long-term. In particular, the proportions of the exchangeable and carbonate fraction of Cd in mine tailings from Second Yeonhwa mine were relatively high. This suggests that Cd may be easily released into and contaminated the nearby environment in the near time. Concentrations of heavy metals in mine tailings and the nearby soil exceeded the standard (agricultural area) of Soil Environment Conservation Law. So it was thought that remediation for mine tailings and the nearby soil is needed. The pollution indices of the samples in this study were for higher than 1.0 and the pollution degree was very serious. Priority remediation site for these mines was Wondong. As Results of danger indices, it was showed that exchangeable form in Wondong and Fe-Mn oxide form in the rest mines should be removed preferentially.

Development of Porous Support with Mine Waste Materials (광산 폐기물을 활용한 다공성 담체 개발)

  • 정문영;정명채;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2004
  • This study focused on examining the possibility of recycling mine solid waste as environmental materials, especially for porous media. Basic properties including mineralogical compositions, chemical compositions, and particle size distribution of the tailings from the Sangdong W mine were checked. The mineralogical and chemical compositions of the tailings samples were not much different in depth. According to Korean Standard Leaching Test for Wastes(KSLT), concentrations of heavy metals leached from the tailings were below the standard values. As a result of particle size analysis, the median diameter (d$_{50}$) of the tailings was in the range of 10 to 30 ${\mu}{\textrm}{m}$. The stable tailings slurry made up of 3 ${\mu}{\textrm}{m}$ in d$_{50}$ was prepared using Attrition Mill. The milling condition was 40 vol% in slurry concentration, 700 rpm in stirring speed, and 1 hour in milling time. PEI was added as dispersing agent. Concentrated slurry was extended to 3 times by foaming method. In the case of 3 times foamed slurry, the total and open porosity of ceramic supports sintered at 1,075$^{\circ}C$ for 90 minutes was about 80% and 72%, respectively. Pore size was in the range of 30∼350${\mu}{\textrm}{m}$. Therefore, the tailings could be recycled starting material for environmental materials such as macroporous ceramic support.

Acid Mine Drainage and Heavy Metal Contamination of Stream Sediments in the Okdongcheon Stream, Sangdong Area, South Korea (강원도 상동지역 옥동천의 광산 산성수 및 하상퇴적물의 중금속 오염)

  • Cheong, Young Wook;Thornton, Iain
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.101-113
    • /
    • 1994
  • Geochemical investigations based on measurements of water parameters and sampling of stream sediments have been carried out, in the Okdongcheon stream and its tributaries in the Sangdong area of South Korea. There are two main problems occurring in the Okdongcheon stream: an acid mine drainage in the upper reaches and toxic trace metal contamination of the stream sediments mainly in the lower reaches. Acid mine water originating from coal mining was neutralized at the confluence of the Cheonpyongcheon stream whilst suspended solids due to flocculation of iron in water caused turbidity which was undesirable. Sediments in the Okdongcheon stream have been contaminated by mining activites. Iron was heavily concentrated in sediments in the upper Okdongcheon whilst toxic trace metals including Pb, Cu, Zn, Co, Cd, As and Bi were accumulated in sediments at stations draining metallic mining areas and near the tailings dam. There is now a requrement to neutralise the acid mine drainage and to use site-specific analysis of biological communities to ensure the conservation and preservation of aquatic organisms.

  • PDF