• Title/Summary/Keyword: 상대압축강도비

Search Result 75, Processing Time 0.021 seconds

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.237-243
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water-cement ratio. Based on the regression results, the influence of fly ash replacement content and water-cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water-cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water-cement ratio. But, the concrete with water-cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water-cement ratio.

Experimental Evaluation of Bearing and Bond Strengths in Compression Splices (철근 압축이음에서 지압강도와 부착강도의 실험적 평가)

  • Chun, Sung-Chul;Lee, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • Compression splices are required for all compression members in almost all of the floors in high-rise buildings. Therefore, a clear understanding of the behavior of compression splices can provide a rational design of compression splices. Tests of compression splices with bearing only and bond only cases were conducted to investigate the component resistance characteristics of compression splices. Test results showed that the circumferential tensile stresses induced by bearing and bond overlapped at the end of the splice length deterred bond and bearing splices from developing target splicing strength when both normal bond and bearing splices were used. In particular, the bearing strength was more significantly reduced than the bond strength since the bearing relied on the limited area near the end of the splice length. However, the strength of the normal splice was always higher than the strength of the bond only or the bearing only case. Consequently, the study results showed that splice strength in compression cannot be improved by means of removing bond or bearing. In addition, the bond strength in bond only splices was nearly same as the bond strength in tension splices and the strength increase of compression splice is attributed to end bearing only characteristic.

Strength Optimization of Ventilating Container(I)-Experimental Analysis (통기성 상자 구조물의 강도적 최적화 연구(I)-실증 분석)

  • Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.2
    • /
    • pp.19-24
    • /
    • 2001
  • The design criteria of ventilating container is not provided yet in Korea. This caused strength reduction due to the ventilating hole and bad ventilating performance. The purposes of this study were to survey the present situation of ventilating container in Korea, to analyze the strength reduction on the atmosphere condition variation, and to provide the criteria for the optimum design of ventilating container. The ventilating area of container was $1.41{\sim}2.65%$, and strength reduction due to the varied pattern, size and location of ventilating hole was $8.5{\sim}20.2%$. The effect on the strength reduction from the pattern and location of ventilating hole was bigger than that from the ventilating area. Equilibrium arrival time of temperature and relative humidity was shorter as the ventilating area was bigger, and temperature reached to the equilibrium state earlier than the relative humidity. There was no significant difference on the ventilating hole pattern between equilibrium arrival time of temperature and relative humidity and equilibrium arrival temperature and relative humidity if the ventilating area was the same.

  • PDF

Effect of Meta Kaolin addition to Activation of waste concrete sludge

  • 황규홍;김재준;연상흠
    • Cement Symposium
    • /
    • no.32
    • /
    • pp.217-221
    • /
    • 2005
  • The utilization of calcined clay, in the form of meta kaolin, as a pozzolanic for mortar and concrete has received considerable attention in recent years. so, the influence of waste concrete sludge and meta kaolin on cement concrete strength has been stud

  • PDF

An Availability Analysis on the Gap K-Joints using High Strength Circular Hollow Section Members (고강도 원형강관 갭K형 접합의 사용성 해석)

  • Ahn, Kwan-Su;Choi, Byong-Jeong;Oh, Young-Suk;Kim, Jae-Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.109-119
    • /
    • 2010
  • There are many restrictions in the application of high-strength HSSs, including yield strength and yield ratio for the 600-MPa steel. The AISC and Canadian codes recommend that the yield strength and yield ratio of HSS members be 360 MPa and 80%, respectively. It is important to understand the true buckling behaviors of HSSs using high-strength steel at the limit states. There are many experimental data regarding the rectangular HSSs, and the circular ones are not enough for high-strength steel. Therefore, this study was conducted to create a better understanding of the buckling behaviors of the 600- and 400-MPa steels based on the results of the finite-element analysis that was done before the experiment. To understand the structural behaviors of the aforementioned steels, the width-to-thickness ratios, the angle of the web members, the yield strength, and the gap of the web members were selected as the main parameters in this study, and ABAQUS, a general finite-element program, was used.As a result, the compression web member reached elastic buckling in the 600-MPa steel and inelastic buckling in the 400-MPa steel. A brittle fracture occurred in the case where the yield ratio was greater than 80%. At the same time, it was found that the limit strength determined via FEM analysis had a higher value compared to the code evaluation with the variation of the width-to-thickness ratio in the main code member. The change in the connection load in high-strength steels was not identified by the other factors.

Estimation of Unconfined Compressive Strength (UCS) of Microfine Cement Grouted Sand (마이크로 시멘트로 그라우팅 된 모래의 일축압축강도 예측)

  • Nam, Hongyeop;Lee, Woojin;Lee, Changho;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.5-15
    • /
    • 2018
  • The unconfined compressive strength (UCS) test through coring is widely used to determine the reinforcement effect of the ground with grouting. However, the UCS test through coring can disturb the ground, is expensive and takes a lot of time to prepare the specimen. In this study, the factors affecting UCS of microfine cement grouted sand are evaluated and an empirical equation of UCS of microfine grouted sand is suggested. It is observed that UCS increases linearly until 28 days, however, the increasing rate of strength decreases sharply after that 28 days. The W/C ratio is dominant factor influencing UCS and UCS increases exponentially with the decrease of water/cement (W/C) ratio. Also, UCS increases linearly with increasing the relative density ranging from 30% to 70% and with decreasing median particle size. However, in case of W/C ratio=1 and K6 ($D_{50}=0.47mm$), UCS is lower than that of K4 ($D_{50}=1.08mm$) and K5 ($D_{50}=0.80mm$) due to filtration effect. Based on the experimental results, the empirical equation of UCS of microfine cement grouted sand can be expressed as the function of median particle size ($D_{50}$), porosity (n) and W/C ratio.

Comparison of Correlation between Chloride Diffusion and Pores Characteristics in Concrete Cured under Extreme Condition (가혹 조건에서 양생된 콘크리트의 염화물 확산과 공극 특성의 상관관계 비교 )

  • So Yeong Choi;Seong Joon Yang;Il Sun Kim;Eun Ik Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.54-61
    • /
    • 2023
  • In this paper, the compressive strength, pore characteristics, and chloride diffusion coefficient were measured at 28 days of age in order to examine the influence of curing conditions for the chloride diffusion and pores in concrete cured under extreme condition. According to the test results, the compressive strength was improved as the relative humidity increased. Additionally, higher compressive strength was observed when the specimens were cured at 35℃. However, the compressive strength of specimens cured at 45℃ was decreased. Meanwhile, the chloride diffusion coefficient decreased with an increase in curing temperature and relative humidity, indicating a difference compared to the trend observed for compressive strength. On the other hand, the excellent correlation showed between compressive strength and chloride diffusion coefficient, porosity and chloride diffusion coefficient when the concrete cured under water. However, when the concrete cured under extreme condition, this correlation was significantly reduced compared to the water curing case. In contrast, it has been determined that there is no significant correlation between the average pore size and chloride diffusion coefficient, regardless of the curing conditions.

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.

Experimental Study on the Compressive Strength of yLRC Composite Columns (yLRC 합성기둥의 압축강도에 관한 실험 연구)

  • Kim, Hyung Geun;Kim, Myeong Han;Cho, Nam Gyu;Kim, Sang Seup;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.545-552
    • /
    • 2009
  • An experimental study was performed on the yLRC composite column. Its external surface was manufactured with y-shape steel sheets and L-shape steel angles, and concrete was poured inside in the field. This composite column has improved the section capacity due to the composite action of steel and concrete, and provides good efficiency in reducing the terms of construction works because of its abridged formworks. The stub column specimens (three small and three large specimens) were tested through concentrical axial loading, and the effect of the width-to-thickness ratio of the steel angle on the column axial strength was examined. The axial strength and behavior of the composite columns were analyzed, and a formula for predicting the axial load capacity was proposed.

Effects of Anisotropic Consolidation on Flow Failure Behavior of a Silty Sand (이방압밀이 실트질 모래의 유동파괴거동에 미치는 영향)

  • 강병희;김방식;정혁일
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.173-180
    • /
    • 2001
  • 이방압밀이 실트질모래의 정적재하에 의한 유동파괴거동에 미치는 영향을 연구하기 위하여 비배수삼축압축시험을 수행하였다. 이를 위하여 상대밀도가 약 17%인 공시체를 습윤다짐방법에 의해서 성형하고 4가지의 압밀응력비, 1.0, 0.7, 0.55, $K_{o}$ 로서 압밀시켰다. 시험결과로서 정상상태선은 p-q 공간상에서 압밀응력비에 관계없이 유일한 직선이며 collapse line의 기울기는 압밀응력비가 증가함에 따라 선형적으로 감소한다는 사실을 보여준다. 또한, 유동파괴거동을 보이는 느슨하게 다져진 실트질모래의 잔류강도($S_{us}$ )와 첨두강도($S^{p}$ )와의 관계는 압밀응력비의 크기에 관계없이 $S_{p}$ /$p_{c}$ = $A_{L}$ +$B_{L}$ ($S_{us}$ /$p_{c}$ )로 표현되는 일반식으로 나타낼 수 있으며 계수 $A_{L}$$B_{L}$은 압밀응력비의 크기에 따라 선형적으로 변하는 경향을 나타낸다.

  • PDF