• Title/Summary/Keyword: 상대비행경로각

Search Result 2, Processing Time 0.017 seconds

Definition of Impact Angle and Impact Angle Control Law Against Maneuvering Target (기동표적에 대한 입사각 정의와 입사각 제어 유도법칙)

  • Kim, Hyun-Seung;Park, Sang-Sup;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.669-676
    • /
    • 2015
  • In this paper, a guidance law for intercepting maneuvering target with a desired impact angle is proposed. The proposed guidance law is modified from the optimal impact angle control law for a fixed target and given by a biased PN law with the impact angle control term in addition to the conventional PN law. Three different kinds of desired impact angles in the respect of LOS angle, flight path angle, and relative flight path angle to the target are defined. The performance of the proposed guidance law is investigated via numerical simulations for various air-to-air engagement scenarios.

The Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part II. Applicability of High Fidelity Helicopter Models (Indirect Method를 이용한 헬리콥터 기동비행 해석 - Part II. High Fidelity 헬리콥터 모델링의 사용 가능성)

  • Kim, Chang-Joo;Yang, Chang-Deok;Kim, Seung-Ho;Hwang, Chang-Jeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • This paper deals with the nonlinear optimal control approach to helicopter maneuver problems using the indirect method. We apply a penalty function to the integral deviation from a prescribed trajectory to convert the system optimality to an unconstrained optimal control problem. The resultant two-point boundary value problem has been solved by using a multiple-shooting method. This paper focuses on the model selection strategies to resolve the problem of numerical instability and high wait time when a high fidelity model with rotor dynamics is applied. Four different types of helicopter models are identified, two of which are linear models with or without rotor models, as well as two models which include the nonlinear mathematical model for rotor in its formulation. The relative computation time and the number of function calls for each model are compared in order to provide a guideline for the selection of helicopter model.