• Title/Summary/Keyword: 상관 함수 추정

Search Result 356, Processing Time 0.027 seconds

A Study of the Method for Estimating the Missing Data from Weather Measurement Instruments (인공신경망을 이용한 기상관측장비 결측 보완 기술에 관한 연구)

  • Min, Jae-Sik;Lee, Moo-Hun;Jee, Joon-Bum;Jang, Min
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.245-252
    • /
    • 2016
  • The purpose of this study is to make up for missing of weather informations from ASOS and AWS using artificial neural networks. We collected temperature, relative humidity and wind velocity for August during 5-yr (2011-2015) and sample designed artificial neural networks, assuming the Seoul weather station was missing. The result of sensitivity study on number of epoch shows that early stopping appeared at 2,000 epochs. Correlation between observation and prediction was higher than 0.6, especially temperature and humidity was higher than 0.9, 0.8 respectively. RMSE decreased gradually and training time increased exponentially with respect to increase of number of epochs. The predictability at 40 epoch was more than 80% effect on of improved results by the time the early stopping. It is expected to make it possible to use more detailed weather information via the rapid missing complemented by quick learning time within 2 seconds.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Transport Concept (시간영역 광전자파 분석기 (Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 오염물질 운송개념)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.713-724
    • /
    • 1996
  • The time-series resident solute concentrations, monitored at two field plots using the automated 144-channel TDR system by Kim (this issue), are used to investigate the dominant transport mechanism at field scale. Two models, based on contradictory assumptions for describing the solute transport in the vadose zone, are fitted to the measured mean breakthrough curves (BTCs): the deterministic one-dimensional convection-dispersion model (CDE) and the stochastic-convective lognormal transfer function model (CLT). In addition, moment analysis has been performed using the probability density functions (pdfs) of the travel time of resident concentration. Results of moment analysis have shown that the first and second time moments of resident pdf are larger than those of flux pdf. Based on the time moments, expressed in function of model parameters, variance and dispersion of resident solute travel times are derived. The relationship between variance or dispersion of solute travel time and depth has been found to be identical for both the time-series flux and resident concentrations. Based on these relationships, the two models have been tested. However, due to the significant variations of transport properties across depth, the test has led to unreliable results. Consequently, the model performance has been evaluated based on predictability of the time-series resident BTCs at other depths after calibration at the first depth. The evaluation of model predictability has resulted in a clear conclusion that for both experimental sites the CLT model gives more accurate prediction than the CDE model. This suggests that solute transport at natural field soils is more likely governed by a stream tube model concept with correlated flow than a complete mixing model. Poor prediction of CDE model is attributed to the underestimation of solute spreading and thus resulting in an overprediction of peak concentration.

  • PDF

Analysis of Oscillometric Model based on Shape of Arterial Pressure (동맥압 형태를 고려한 오실로메트릭 모델분석)

  • 임성수;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.411-417
    • /
    • 2000
  • This paper describes the analysis of the oscillometric method based on the shape of arterial pressure and proposal of a new algorithm for estimating the blood pressure by computer simulation. In the first step, the arterial pressure model which is able to control the shape of arterial pressure was designed and then we simulated the oscillometric model using both the existing exponential model showing the static arterial pressure-volume relation and the designed arterial pressure model. By analyzing the correlation of characteristic ratio based on the shape of arterial pressure, we could find that the characteristic ratio was not the only standard parameter for estimating systolic and diastolic pressure. We were able to estimate the shape of arterial pressure by computing the correlation of arterial pressure shape with oscillation shape. Finally, we proposed an algorithm which is able to estimate systolic and diastolic pressure according to pressure(Pp) table constructed from the relation of maximum amplitude of oscillation and arterial pressure shape. We tested 60 arterial pressure waveforms having various arterial pressure shape and pulse. As a results, the absolute deviation average values of the estimation of systolic, diastolic and mean pressure were 1.62%, 2.40% and 2.20%, respectively. In conclusions, the proposed algorithm showed the possibility of usefullness in estimating the blood pressure.

  • PDF

Temporal and Spatial Variability of the Middle and Lower Tropospheric Temperatures from MSU and ECMWF (MSU와 ECMWF에서 유도된 중간 및 하부 대류권 온도의 시 ${\cdot}$ 공간 변동)

  • Yoo, Jung-Moon;Lee, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.503-524
    • /
    • 2000
  • Intercomparisons between four kinds of data have been done to estimate the accuracy of satellite observations and model reanalysis for middle and lower tropospheric thermal state over regional oceans. The data include the Microwave Sounding Units (MSU) Channel 2 (Ch2) brightness temperatures of NOAA satellites and the vertically weighted corresponding temperature of ECMWF GCM (1980-93). The satellite data for midtropospheric temperatures are MSU2 (1980-98) in nadir direction and SC2 (1980-97) in multiple scans, and for lower tropospheric temperature SC2R (1980-97). MSU2 was derived in this study while SC2 and SC2R were described in Spencer and Christy (1992a, 1992b). Temporal correlations between the above data were high (r${\ge}$0.90) in the middle and high latitudes, but low(r${\sim}$0.65) over the low latitude and more convective regions. Their values with SC2R which included the noises due to hydrometeors and surface emission were conspicuously low. The reanalysis shows higher correlation with SC2 than with MSU2 partially because of the hydrometeors screening. SC2R in monthly climatological anomalies was more sensitive to surface thermal condition in northern hemisphere than MSU2 or SC2. The first EOF mode for the monthly mean data of MSU and ECMWF shows annual cycle over most regions except the tropics. The mode in MSU2 over the Pacific suggests the east-west dipole due to the Walker circulation, but this tendency is not clear in other data. In the first and second modes for the Ch2 anomalies over most regions, the MSU and ECMWF data commonly indicate interannual variability due to El Ni${\tilde{n}$o and La Ni${\tilde{n}$a. The substantial disagreement between observations and model reanalysis occurs over the equatorial upwelling region of the western Pacific, suggesting uncertainties in the model parameterization of atmosphere-ocean interaction.

  • PDF

Genotypic Differences in Yield and Yield-related Elements of Rice under Elevated Air Temperature Conditions (온도 조건에 따른 벼 수량 및 수량 관련 요소 반응의 품종간 차이)

  • Lee, Kyu-Jong;Kim, Dong-Jin;Ban, Ho-Young;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.306-316
    • /
    • 2015
  • An experiment in a controlled environment was conducted to evaluate the genotypic differences of grain yield and yield-related elements of rice under elevated air temperature. Eight rice genotypes included in three maturing group (early, medium, and medium-late maturing group) were grown with 1/5,000 a Wagner pots at four plastic houses that were controlled to the temperature regimes of ambient temperature (AT), $AT+1.5^{\circ}C$, $AT+3.0^{\circ}C$, and $AT+5.0^{\circ}C$ throughout the rice growing season in 2011. Ripened grain ratio and 1000 grain weight showed the most susceptible and tolerant responses to elevated air temperature, respectively. The grain yield reduction was attributable to the sharp decrease of ripened grain ratio. Grain yield was significantly decreased above the treatment of $AT+1.5^{\circ}C$ and $AT+3.0^{\circ}C$ in early maturing group and the others, respectively. Highly correlation to average temperature from heading to 20 days was revealed in yield (r = -0.69), ripened grain ratio (r = -82), fully-filled grain (r = -70), and 1000 grain weight (r = -0.31). The responses of yield and yield-related elements except number of spikelets and panicle to elevated air temperature were fitted to a logistic function. The parameters of logistic function for each elements except grain yield could not be applied to the other varieties. In conclusion, yield and yield-related elements responded differentially to elevated air temperature according to maturity groups and rice varieties. Ongoing global warming is expected to decrease the grain yield not only by decreasing the grain weight but also decreasing the ripened grain ratio in the future. However, the yield reduction would be mitigated by adopting and/or breeding the less sensitive varieties to high temperature.

Study on Genetic Evaluation using Genomic Information in Animal Breeding - Simulation Study for Estimation of Marker Effects (가축 유전체정보 활용 종축 유전능력 평가 연구 - 표지인자 효과 추정 모의실험)

  • Cho, Chung-Il;Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • This simulation study was performed to investigate the accuracy of the estimated breeding value by using genomic information (GEBV) by way of Bayesian framework. Genomic information by way of single nucleotide polymorphism (SNP) from a chromosome with length of 100cM were simulated with different marker distance (0.1cM, 0.5cM), heritabilities (0.1, 0.5) and half sibs families (20 heads, 4 heads). For generating the simulated population in which animals were inferred to genomic polymorphism, we assumed that the number of quantitative trait loci (QTL) were equal with the number of no effect markers. The positions of markers and QTLs were located with even and scatter distances, respectively. The accuracies of estimated breeding values by way of indicating correlations between true and estimated breeding values were compared on several cases of marker distances, heritabilities and family sizes. The accuracies of breeding values on animals only having genomic information were 0.87 and 0.81 in marker distances of 0.1cM and 0.5cM, respectively. These accuracies were shown to be influenced by heritabilities (0.87 at $h^2$ =0.10, 0.94 at $h^2$ =0.50). According to half sibs' family size, these accuracies were 0.87 and 0.84 in family size of 20 and 4, respectively. As half sibs family size is high, accuracy of breeding appeared high. Based on the results of this study it is concluded that the amount of marker information, heritability and family size would influence the accuracy of the estimated breeding values in genomic selection methodology for animal breeding.

Experiments on the stability of the spatial autocorrelation method (SPAC) and linear array methods and on the imaginary part of the SPAC coefficients as an indicator of data quality (공간자기상관법 (SPAC)의 안정성과 선형 배열법과 자료 품질 지시자로 활용되는 SPAC 계수의 허수 성분에 대한 실험)

  • Margaryan, Sos;Yokoi, Toshiaki;Hayashi, Koichi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.121-131
    • /
    • 2009
  • In recent years, microtremor array observations have been used for estimation of shear-wave velocity structures. One of the methods is the conventional spatial autocorrelation (SPAC) method, which requires simultaneous recording at least with three or four sensors. Modified SPAC methods such as 2sSPAC, and linear array methods, allow estimating shear-wave structures by using only two sensors, but suffer from instability of the spatial autocorrelation coefficient for frequency ranges higher than 1.0 Hz. Based on microtremor measurements from four different size triangular arrays and four same-size triangular and linear arrays, we have demonstrated the stability of SPAC coefficient for the frequency range from 2 to 4 or 5 Hz. The phase velocities, obtained by fitting the SPAC coefficients to the Bessel function, are also consistent up to the frequency 5 Hz. All data were processed by the SPAC method, with the exception of the spatial averaging for the linear array cases. The arrays were deployed sequentially at different times, near a site having existing Parallel Seismic (PS) borehole logging data. We also used the imaginary part of the SPAC coefficients as a data-quality indicator. Based on perturbations of the autocorrelation spectrum (and in some cases on visual examination of the record waveforms) we divided data into so-called 'reliable' and 'unreliable' categories. We then calculated the imaginary part of the SPAC spectrum for 'reliable', 'unreliable', and complete (i.e. 'reliable' and 'unreliable' datasets combined) datasets for each array, and compared the results. In the case of insufficient azimuthal distribution of the stations (the linear array) the imaginary curve shows some instability and can therefore be regarded as an indicator of insufficient spatial averaging. However, in the case of low coherency of the wavefield the imaginary curve does not show any significant instability.

Effect of Bark and Drying Waste Liquor of Larix kaempferi Used as An Additive on The Fuel Characteristics of Wood Pellet Fabricated with Rigida Pine and Quercus mongolica Sawdust (첨가제로서 낙엽송의 수피 및 건조폐액이 리기다소나무 및 신갈나무 펠릿의 연료적 특성에 미치는 영향)

  • Yang, In;Chae, Hyun-Gyu;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.258-267
    • /
    • 2017
  • In this study, pitch pine (Pinus rigida, PIR) and Mongolian oak (Quercus mongolica, QUM) pellets were fabricated with bark or/and drying waste liquor (DWL) of larch (Larix kaempferi, LAK) as an additive. Based on the results of fuel characteristics of the pellets, optimal conditions for producing the high-quality pellets were provided. In the analysis of chemical composition, bark contained holocelluose and lignin of 90% and over. DWL had 0.1% solid assumed to sugars which are generated from the oven-drying of LAK logs. QUM showed high ash content (2.2%) by containing of bark in the sawdust. Bark and DWL of LAK had high ash content of 4% and over. Calorific values of all specimens and additives were higher than that of the $1^{st}$-grade standard of wood pellets designated by NIFOS (18.0 MJ/kg). PIR and QUM pellets were fabricated with additive of 2 wt% based on the solid weight of oven-dried sawdust using a piston-type flat-die pelletizer, and thus ash content and calorific value of the pellets did not affect by the use of additive. Durability of the pellets increased with the use of additive. Durabilties of pellets, which were fabricated with bark as an additive and DWL as a controller of moisture content for sawdust, did not differ from those of pellets without additives and were lower than those of pellets either with bark or DWL. However, use of both bark and DWL for the production of wood pellets might be favorable because it can make a profit from the collection process of DWL. Based on the results of fuel characteristics of the pellets, QUM and PIR pellets were produced by a flat-die pelletizer. Moisture content (MC), bulk density and durability of the pellets improved with the use of additive. Particularly, sawdust MC of 10% and the addition of bark or DWL for PIR as well as sawdust MC of 12% and the addition of bark for QUM might be optimal conditions for the production of high-quality pellets. Except for the ash content of QUM pellets, other properties of PIR and QUM pellets exceeded the $1^{st}$-grade wood pellets standards of NIFOS.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.