• Title/Summary/Keyword: 삼협댐

Search Result 20, Processing Time 0.02 seconds

해외동향

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.97-13 s.182
    • /
    • pp.12-29
    • /
    • 1997
  • PDF

해외동향

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.97-17 s.186
    • /
    • pp.18-29
    • /
    • 1997
  • PDF

국내외 정보

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.96-10 s.155
    • /
    • pp.22-60
    • /
    • 1996
  • PDF

국내외 정보

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.95-20 s.141
    • /
    • pp.20-40
    • /
    • 1995
  • PDF

국내외 정보

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.96-6 s.151
    • /
    • pp.16-44
    • /
    • 1996
  • PDF

전기동향

  • Korea Electrical Manufacturers Association
    • 전기산업
    • /
    • v.8 no.5
    • /
    • pp.114-120
    • /
    • 1997
  • PDF

Analysis of Water Storage Variation in Yangtze River Basin and Three Gorges Dam Area using GRACE Monthly Gravity Field Model (GRACE 월별 중력장모델을 이용한 양자강유역 및 삼협댐 지역 저수량 변화 분석)

  • Huang, He;Yun, Hong-Sic;Lee, Dong-Ha;Jeong, Tae-Jun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.375-384
    • /
    • 2009
  • The GRACE satellite, Launched in March 2002, is applied to research on glacial melt of polar regions, glacial isostatic adjustment(GIA), sea level change, terrestrial water storage(TWS) variation of river basin and large-scale earthquake etc. In this research, the TWS variation of Yangtze river basin from August, 2002 to January, 2009 is analyzed using Level-2 GRACE monthly gravity field model. Particularly, gravity changes of the Three Gorges Dam during the impoundment process in 2003, 2006 and 2008 is observed by estimating equivalent water thickness(EWT). The research results show the distinct annual and seasonal changes of Yangtze river basin, and its amplitude of annual variation is 2.3cm. In addition, we compare the results with water resource statistics and hydrologic observation data to confirm the possibility of research of TWS variation of river basin using GRACE observation data, and also the satellite gravity data is of great help for the research on the movement and periodic changes of river basin.

Landslide Analysis of River Bank Affected by Water Level Fluctuation II (저수위 변동에 영향을 받는 강기슭의 산사태 해석 II)

  • Kim, You-Seong;Wang, Yu-Mei;Choi, Jae-Seon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.87-93
    • /
    • 2010
  • The change of water level in reservoirs is an important factor causing failure of bank slopes, i.e. landslide. The water level of Three Gorges reservoir in China fluctuate between 145 m and 175 m, as a matter of flood control. During its normal operational state, the rate of water level fluctuation is supposed to range from 0.67 m/d to 3.0 m/d. Majiagou slope is located on the left bank of Zhaxi River, 2.1 km up from the outlet. Zhaxi River is a tributary of the Yangtze River within the Three Gorges area, of which the water level changes with the reservoir. At the back of Majiagou slope, a 20 m long and 3~10 cm wide fissure developed just after the reservoir water level rose from 95 m to 135 m in 2003. This big fissure was a full suggestion of potential failure of this slope. In this study, the pore water pressure files obtained from seepage analysis were used to evaluate the change in factor of safety (FS) with reservoir water level. Slope stability analyses then were carried out, with fully specified slip surface and limit equilibrium method. In the limit equilibrium analysis, the contribution of negative pore water pressure to shear strength was considered by the use of Fredlund's shear strength equation for unsaturated soils. On the base of the analyses, the change of FS with reservoir water level was interpreted in detail. It was found that FS against bank slopes decreases with the rise of the reservoir water level and increases with the drawdown of the reservoir water level. The most dangerous state was when the reservoir water level stays at the highest for a long time.

  • PDF

Landslide Analysis of River Bank Affected by Water Level Fluctuation I (저수위 변동에 영향을 받는 강기슭의 산사태 해석 I)

  • Kim, You-Seong;Wang, Yu-Mei
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.77-85
    • /
    • 2010
  • The change of water level in reservoirs is an important factor causing failure of bank slopes, i.e. landslide. The water level of Three Gorges reservoir in China fluctuate between 145 m and 175 m, as a matter of flood control. During its normal operational state, the rate of water level fluctuation is supposed to range from 0.67 m/d to 3.0 m/d. Majiagou slope is located on the left bank of Zhaxi River, 2.1 km up from the outlet. Zhaxi River is a tributary of the Yangtze River within the Three Gorges area, of which the water level changes with the reservoir. At the back of Majiagou slope, a 20 m long and 3~10 cm wide fissure developed just after the reservoir water level rose from 95 m to 135 m in 2003. This big fissure was a full suggestion of potential failure of this slope. In this study, unsaturated-saturated seepage analyses were carried out to simulate the change of pore-water pressures in the bank slope subjected to the reservoir water level change. The obtained pore-water pressures were then used to evaluate the change in factor of safety (FS) with reservoir water level. It was found that the phreatic line showed a delayed response with respect to the change of the reservoir water level, because the seepage through soil layer was generally slower than water flows itself. During the rising and drawdown process, the phreatic lines take the shapes of concave and convex, respectively. And the fluctuation of reservoir water level just affected the front part of the bank slope, but had little influence on the back of the slope.

  • PDF