• Title/Summary/Keyword: 삼축압축

Search Result 383, Processing Time 0.019 seconds

The Influence of Initial Stress Ratio on the Stress~Strain Characteristics of Geosynthetics Reinforced Clayey Soil (토목섬유 보강점성토의 응력~변형특성에 미치는 초기응력비의 영향)

  • 이재열;이광준;김유성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.169-178
    • /
    • 2002
  • The stress~strain characteristics of geosynthetics reinforced clayey soil were investigated by triaxial compression tests. All the tests were peformed either on unreinforced or reinforced soils under fully drained condition after having been consolidated isotropically or anisotropically to the required level of effective stresses by the small increment of 0.05kgf/$cm^2$. The anisotropically consolidated drained tests were performed to simulate the in-situ condition of reinforced soil structures such as reinforced soil wall, abutment and embankment which are generally in the anisotrpic state. From a series of tests it was ffund that the behavior of the anisotropically consolidated reinforced clayey soils was very different from stress~strain characteristics of consolidated reinferced clayey soils. It was found especially that the initial Young's moduli of anisotropically consolidated reinforced clayey soils were higher than those of isotropically consolidated reinforced clayey soils. It was found also that the reinforcement effect in anisotropically consolidated reinforced soils developed at a much lower level of axial strain(0.01%) compared with isotropically consolidated ones(about 1.0~5.0%).

Constitutive Model for Unsaturated Soils Based on the Effective Stress (유효응력에 근거한 불포화토의 역학적 구성모델)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.55-69
    • /
    • 2011
  • The importance of unsaturated state in various geo-engineering problems has led to the advance of mechanical constitutive model emulating behavior of unsaturated soils in response to thermo-hydro-mechanical loading. Elasto-plastic mechanical constitutive model for unsaturated soil is formulated based on Bishop's effective stress. Effective stress and temperature are main variables in constitutive equation, and incremental formulation of constitutive relationship is derived to compute stress update and stiffness tensor. Numerical simulations involving coupled THM processes are conducted to discuss numerical stability and applicability of developed constitutive model: one-dimensional test, tri-axial compression test, and clay-buffering at high level radioactive waste disposal. Numerical results demonstrated that developed model can predict very complex behavior of coupled THM phenomena and is applicable to geo-engineering problems under various environmental conditions, as well as interpret typical behavior of unsaturated soils.

Bond Stress in Concrete Pilled Steel Tubular Column (CFT 기둥의 부착응력에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • CFT column has excellent structural properties due to the composite action between concrete and steel tube. The bond behavior between the constituent elements has to be found for analyzing the behavior of CFT column. A new model is necessary because most of existing models for bond stress-slip relationship of the deformed bar cannot be applied to the CFT column. Therefore, the objective of this research is to develop a new model related to the bond behavior of CFT column considering the relation between bond stress and vertical stress, and the distribution of lateral stress under the confinement created by steel casing. From equilibrium condition, the formula for relationship between bond stress and vertical stress is derived, and the relationship for the lateral stresses of the CFT column section is obtained by an Airy stress function. The experiments are performed for five CFT column specimens axially loading on concrete alone. The relation between bond strength and lateral stress is investigated from the regression analysis using the measured strains. Finally a new bond strength model is proposed, which is able to predict the relationship for the stress of each direction of CFT column loading on concrete.

Evaluation of Dynamic Ground Properties of Pohang Area Based on In-situ and Laboratory Test (현장실험 및 동적실내실험을 이용한 포항지역 동적 지반특성 평가)

  • Kim, Jongkwan;Kwak, Tae-Young;Han, Jin-Tae;Hwang, Byong-Youn;Kim, Ki-Seog
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.5-20
    • /
    • 2020
  • In 2017, after the Pohang earthquake, liquefaction phenomena were firstly observed after the observation of domestic earthquake by epicenter. In this study, various in-situ tests and laboratory tests were performed to determine the dynamic properties in (1) Songlim Park, (2) Heunghae-eup, Mangcheon-ri and (3) Heungan-ri, Pohang. As a site investigation, the standard penetration test (SPT), cone penetration test (CPT), multichannel analysis of surface wave (MASW), density logging, downhole test, and electrical resistivity survey were performed. In addition, cyclic triaxial test against sampled sand from site was also conducted. Based on the result, high ground water level and loose sand layer in shallow depth were observed for all sites. In addition, liquefaction resistance ratio of soil sampled from Songlim park was lower than those of Jumunjin sand, Toyoura sand, and Ottawa sand.

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response (전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발)

  • Woo, Sang Inn;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.117-124
    • /
    • 2020
  • The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.

Stress-strain Behavior of Remolded Clay Using Different Shear Rate and Plastic Indices (전단속도와 소성지수를 달리한 재생성 점성토의 응력-변형률 거동)

  • Lee, Yonghee;Kang, Kwon-Soo;Jung, Sang-Guk;Kang, Jintae;Kim, Daehyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • In general, the shear strength of a clay specimen under the direct shear test and the triaxial compression test increases with an increase in the shear rate. This study investigates the effects of shear rate and silt content on the stress-strain behavior of remolded Gwangyang clay, by changing the shear rate and the silt content. Based on the results of the triaxial compression tests, the equi-strain line of remolded Gwangyang clay shows initially positive slope and then becomes flat at certain strain level. As the strain level where the equistrain becomes flat is different depending on the soil with different silt contents, this can be considered as the inherent property of soil.

Evaluation of Liquefaction Resistance of Sandy Soil Layer in Songlim-park, Pohang, Using Undisturbed Sample (불교란시료를 활용한 포항시 송림공원 사질토층의 액상화저항강도 평가)

  • Kim, Jongkwan;Han, Jin-Tae;Park, Ka-hyun;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.107-116
    • /
    • 2021
  • In this study, a set of laboratory liquefaction test has been conducted using undisturbed samples collected from Songlim-park, Pohang where liquefaction phenomenon had been observed in 2017. Soil samples were frozen right after tube sampling to minimize the disturbances during transport, storage, and test preparation. Cyclic triaxial test has been carried out to evaluate the liquefaction resistance ratio of undisturbed soil samples. As a result, the liquefaction resistance ratio of samples collected from 8.0~8.8 m and 11.0~11.8 m were almost similar, and these values were approximately 0.04~0.07 larger than values estimated by simplified assessment method using field test results. It is expected that the application of undisturbed sample for the evaluation of liquefaction resistance could contribute to the economical design of geotechnical structures.

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

Stability Evaluation of Weathered Gneiss Soil Slopes according to Clay Content (점토함유량에 따른 편마풍화토 비탈면의 안정성 평가)

  • Hyunsu Park;Byeongsu Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.15-23
    • /
    • 2023
  • In this study, the infiltration behavior of slopes composed of mixed soils with clay contents of 0%, 5%, and 10% in weathered Gneiss soil, which is a representative weathered soil in Korea, was investigated, and the stability of unsaturated slopes due to rainfall infiltration was examined. For this, in this study, the soil water characteristic curve was obtained through the water retention test, and the strength constant was obtained through the triaxial compression test. Based on the obtained results, the influence of clay content and antecedent rainfall effect (i.e., initial suction) on the formation of saturated zone (i.e., wetting band) and slope stability due to rainfall infiltration was examined through infiltration and stability analyses. As a result, it was found that the hig her the initial suction, the slower the formation of the saturated zone on the slope. In addition, it was found that as the clay content increases, the shear strength of the ground increases and the resistance to rainfall infiltration increases, and eventually the slope stability is greatly improved.

Shear Strength Characteristics of Unconsolidated-Undrained Reinforced Decomposed Granite Soil under Monotonic and Cyclic Loading (정.동적 하중에 의한 비압밀비배수 보강화강풍화토의 전단강도 특성)

  • Cho, Yong-Sung;Koo, Ho-Bon;Park, Inn-Joon;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.13-21
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth ($20{\sim}50\;cm$) and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and compare the stress transformation characteristics of reinforced weathered granite soil with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The result is that the cohesion component of the strength increased greatly and the friction component decreased slightly.