Browse > Article
http://dx.doi.org/10.7843/kgs.2021.37.12.107

Evaluation of Liquefaction Resistance of Sandy Soil Layer in Songlim-park, Pohang, Using Undisturbed Sample  

Kim, Jongkwan (Korea Institute of Civil Engrg. and Building Technology)
Han, Jin-Tae (Korea Institute of Civil Engrg. and Building Technology)
Park, Ka-hyun (Korea Institute of Civil Engrg. and Building Technology)
Lee, Seokhyung (Korea Institute of Civil Engrg. and Building Technology)
Publication Information
Journal of the Korean Geotechnical Society / v.37, no.12, 2021 , pp. 107-116 More about this Journal
Abstract
In this study, a set of laboratory liquefaction test has been conducted using undisturbed samples collected from Songlim-park, Pohang where liquefaction phenomenon had been observed in 2017. Soil samples were frozen right after tube sampling to minimize the disturbances during transport, storage, and test preparation. Cyclic triaxial test has been carried out to evaluate the liquefaction resistance ratio of undisturbed soil samples. As a result, the liquefaction resistance ratio of samples collected from 8.0~8.8 m and 11.0~11.8 m were almost similar, and these values were approximately 0.04~0.07 larger than values estimated by simplified assessment method using field test results. It is expected that the application of undisturbed sample for the evaluation of liquefaction resistance could contribute to the economical design of geotechnical structures.
Keywords
Cyclic triaxial; Freezing; Laboratory test; Liquefaction; Undisturbed sample;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hwang, B.Y., Han, J.T., Kim, J.K., and Kwak, T.Y. (2020), "Liquefaction Characteristic of Pohang Sand Based on Cyclic Triaxial Test", Journal of the Korean Geotechnical Society, Vol.36, No.9, pp.21-32.   DOI
2 Ishihara, K. and Li, S.I. (1972), "Liquefaction of Satruated Sand in Triaxial Torsion Shear Test", Soils and Foundations, Vol.12, No.2, pp.19-39.   DOI
3 Kiyota, T., Kiseki, J., Sato, T., and Kuwano, R. (2009), "Aging Effects on Small Shear Moduli and Liquefaction Properties of In-situ Frozen and Reconstituted Sandy Soils", Soils and Foundations, Vol.49, No.2, pp.259-274.   DOI
4 Seed, HB and Idriss, IM. (1982), "Ground Motions and Soil Liquefaction during Earthquakes", Berkeley, Earthquake ngineering Research Institute, pp.134.
5 Seed, H.B. and Idriss, I.M. (1971), "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundations Division 97 (SM9), pp.1249-1273.   DOI
6 Youd, T. L. and Idriss, I. M. (2001), "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of geotechnical and geoenvironmental engineering, Vol.127, No.4, pp.297-313.   DOI
7 Ghinonna, V. N. and Procino D. (2006), "Liquefaction Resistance of Undisturbed and Reconstituted Samples of a Natural Coarse Sand from Undrained Cyclic Triaxial Tests", Journal of Geotechnical and Geoenvironmental Engineering, Vol.132, No.2, pp.194-202.   DOI
8 Andrus, R. D. and Stokoe II, K. H. (2000), "Liquefaction Resistance of Soils from Shear-wave Velocity", Journal of geotechnical and geoenvironmental engineering, Vol.126, No.11, pp.1015-1025.   DOI
9 Arulmoki, K., Arulanandan, K., and Seed, H.B. (1985), "New Method for Evaluating Liquefaction Potential", Journal of Geotechnical Engineering ASCE, Vol.111, No.1, pp.95-114.   DOI
10 Barton, M. E. (1993), "Cohesive Sands: The Natrual Transition from Sands to Sandstones", Geotechnical Engineering of Hard Soils-Soft Rocks (eds. by Anagnostopoulus et al.), Balkema, pp.367-374.
11 Goto, S., Suzuki, Y., Nishio, S., and Oh-oka, H. (1992), "Mechanical Properties of Undisturbed Tone-river Gravel Obtained by In-situ Freezing Method", Soils and Foundations, Vol.32, No.3, pp.15-25.   DOI
12 Hatanaka, M., Sugimoto, M., and Suzuki, Y. (1985), "Liquefaction Resistance of Two Alluvial Volcanic Soils Sampled by in Situ Freezing", Soils and Foundations, Vol.25, No.3, pp.49-63.   DOI
13 Robertson, P. K. and Wride, C. E. (1998), "Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test", Canadian Geotechnical Journal, Vol.35, No.3, pp.442-459.   DOI
14 Ishihara, K. (1996), Soil behavior in earthquake geotechnics, The Oxford engineering science series.
15 Iwasaki, T., Arakawa, T., and Tokida, K. (1984), "Simplified Procedures for Assessing Soil Liquefaction during Earthquakes", Soil Dynamics and Earthquake Engineering, Vol.3, No.1, pp.49-58.   DOI
16 Kiyota T., Koseki, J., and Sato, T. (2013), "Relationship between Limiting Shear Strain and Reduction of Shear Moduli due to Liquefaction in Large Strain Torsional Shear Tests", Soil Dynamics and Earthquake Engineering, Vol.49, pp.122-134.   DOI
17 Seed, H. B., Idriss, I. M., and Arango, I. (1983), "Evaluation of Liquefaction Potential Using Field Performance Data", Journal of Geotechnical Engineering, Vol.109, No.3, pp.458-482.   DOI
18 Enomoto Tadao (2019), "Liquefaction and Post-liquefaction Properties of Sand-silt Mixtures and Undisturbed Silty Sands", Soils and Foundations, Vol.59, No.6, pp.2311-2323.   DOI
19 Idriss, I. M. and Boulanger, R. W. (2006), "Semi-empirical Procedures for Evaluating Liquefaction Potential during Earthquakes", Soil dynamics and earthquake engineering, Vol.26, pp.115-130.   DOI
20 Ministry of Oceans and Fisheries (2018), Korea Design Standard : Seismic Design of Port and Harbor (KDS 64 17 00).
21 Yoshimi, Y., Tokimatsu, K., and Ohara, J. (1994), "In Situ Liquefaction Resistance of Clean Sands Over a Wide Density Range", Geotechnique, Vol.44, No.3, pp.479-494.   DOI
22 Verma, P., Sedalinova, A., and Wijewickreme, D. (2019), "Equivalent Number of Uniform Cycles Versus Earthquake Magnitude Relationship for Fine-grained Soils", Canadian Geotechnical Journal, Vol.56, pp.1596-1608.   DOI
23 Yoshimi, Y., Tokimatsu, K., Kaneko, O., and Makihara, Y. (1984), "Undrained Cyc lic Shear Strength of a Dense Niigata Sand, Soils and Foundations, Vol,24, No.4, pp.131-145.   DOI