• Title/Summary/Keyword: 삼축시험

Search Result 452, Processing Time 0.024 seconds

Effect of Sodium Chloride on Stress-Deformation of Sand Bentonite Mixture (염분이 모래와 벤토나이트 혼합토의 응력 변형에 미치는 영향)

  • 안태봉
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.17-28
    • /
    • 1997
  • In this study sodium chloride solution is employed for chemicals, and several cylindrical triaxial tests are performed on the sand-bentonite mixtures saturated with sodium chloride solution. Deformation(elastic modulus, E) and strength(cohesion, c', and angle of friction, f') parameters are obtained from the triaxial tests as functions of confining pressure and sodium chloride solution concentrations. The results here indicate an increase in the value of effective cohesion with increase in the concentration of NaCl solution, which can be explained by using the Gouy-Chapman model. The value of the effective angle of shearing resistance does not show significant change with the increase in concentration of NaCl solution. The Young's modulus also increases with the increase in concentration of NaCl solution.

  • PDF

Micro-damage Process in Granite Under the State of Water-saturated Triaxial Compression (수침삼축압축하에서 관찰되는 화강암의 미세 파괴)

  • Yong Seok Seo;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.243-251
    • /
    • 1999
  • Granitic rock, by its nature, contains numerous micro-discontinuities including grain boundary, microcracks, microcavities and mineral cleavages. The brittle fracture of rock is a progressive procedure in which the failure occurs with prior microcracking. In this paper, initiation, propagation and interaction of microcracks are considered to be the dominant, controlling micromechanisms of macroscopic failure. The authors show a few patterns of microcrack initiation and propagation by using sequential photographs of water-saturated granite taken under triaxial compressive state. The failure process was observed directly and continuously by a newly developed triaxial compressive test system.

  • PDF

A Study on the Estimation of In-situ Undrained Shear Strength Using Effective Stress Paths of Reconstituted Sample by Unconfined Compression Test (재구성 시료의 일축압축시험에서 유효응력경로를 이용한 원지반의 비배수 전단강도 추정에 관한 연구)

  • 박성재;오원택;정경환;여주태
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.93-102
    • /
    • 2003
  • Unconfined compression test (UC) has been widely used to determine the undrained shear strength ($c_u$) of clay, because it is convenient and economical. However, UC can not represent the behaviour of in-situ stress condition and the strength obtained by the test is generally underestimated compared to that of triaxial compression, due to no confining pressure. Therefore, a simple and practical method to correct the ($c_u$) for sample disturbance and to be used in geotechnical practice is needed. This study is aimed at proposing the method to estimate in-situ undrained shear strength from UC with suction measurement. The proposed method is based on theoretical shear strength equation of perfect sample (Noorany & Seed, 1965), and effective overburden stress and analysis results ($A_f,\phi'$) of effective stress behaviour by UC are needed for the equation. The shear resistance angle ($\phi'$) can be simply estimated through the result that $K_f$-line slope of the UC is 1.6 times higher than that of triaxial compression test. The result of this study shows that the measured strength by this method is very similar to that of the undrained shear strength by triaxial compression test (CK$_0$UC).

Experimental Simulations of Borehole Breakouts and Their Relationship to In Situ Stress Magnitudes (시추공벽 파쇄 모의 시험 및 현장 응력과의 관계 연구)

  • 송인선
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.225-236
    • /
    • 2000
  • We conducted laboratory simulations of deep vertical drilling into the earth's crust to induce borehole breakouts and investigated their potential use for estimating in situ stress magnitudes in Westerly granite and Berea sandstone. Our experiments consisted of two major stages, a series of triaxial tests and borehole-breakout formation tests under a wide range of far-field stresses. We derived the Mohr-Coulomb, Nadai and Mogi failure criteria from the triaxial test results. Each criterion was compared with the stress condition at breakout boundaries. We concluded that the well known Mohr-Coulomb criterion is not compatible with the stress condition at breakout failure. On the other hand, polyaxial (truly triaxial) failure criteria such as the Nadai criterion for Berea sandstone and the Mogi criterion for Westerly granite were much more suitable for predicting breakout failure zone. Such failure criteria appeared to enable the reliable estimation of the magnitude of one of two horizontal principal stresses if the other one is known.

  • PDF

Study on the Adaptability of Hyperbolic Constitutive Model for Rubble Stone (사석지반에 대한 쌍곡선 구성모델의 적용성 연구)

  • Hwang, Se-Hwan;Kim, Jong-Soo;Kwon, Oh-Kyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.53-63
    • /
    • 2002
  • Until recently the other attempts except linear elastic analysis using assumed elastic modulus had not been made in order to evaluate the settlement of the rock fill materials in Korea. Especially, it was almost impossible to predict the precise settlement of the breakwater structure made with dumped rubble stone. In this study, 3 sets of large scaled triaxial compression tests for porous basaltic quarry rocks were carried out and numerical simulation of those triaxial compression tests were performed applying non linear elastic model. Two stress-strain behaviors were compared to study the adaptability of hyperbolic constitutive model for the rubble stone. The results showed quite good agreements between the two stress-strain behaviors. Thus, the hyperbolic constitutive model is thought to be alternative approach evaluate the settlements of the loose rock-fill material.

  • PDF

Consolidation and Strength Properties of Clay Subjected to High Temperature Histories (고온이력을 받는 점토의 압밀 및 전단특성)

  • Lee Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.41-49
    • /
    • 2005
  • Recently, ground has been often exposed to high temperature environments such as chemical ground improvement, thermal energy storage system, and underground nuclear waste disposal system. Since the behavior of clay is sensitive to temperature change, the studies on the engineering properties of clay subjected to high temperature history may be important. This paper presents the mechanical behavior of clay with high temperature condition. $\bar{CU}$ tests using a high temperature and pressure triaxial compression test apparatus were carried out in order to investigate characteristics of deformation, shear strength, compression and consolidation of clay. During tests, the temperature was varied from $20^{\circ}C,\;50^{\circ}C,\;75^{\circ}C,\;80^{\circ}C\;to\;100^{\circ}C$.

An Anisotropic Hardening Constitutive Model for Dilatancy of Cohesionless Soils : II. Verification (사질토의 체적팽창을 고려한 비등방경화 구성모델 : II. 검증)

  • Oh, Se-Boong;Park, Hyun-Il;Shin, Dong-Hoon;Kim, Wook;Kwon, Oh-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.85-94
    • /
    • 2004
  • In the companion paper, a constitutive model was proposed in order to represent brittleness and dilatancy for cohesionless soils. An optimized design methodology was proposed on the basis of real-coded genetic algorithm in order to determine parameters fir the proposed model systematically. The material parameters were then determined by that algorithm. In order to verify the proposed model, triaxial tests were peformed under $K_0$ conditions for weathered soils. In addition, the results of istropic compressed triaxial tests for granular materials verified the proposed model. For those results the brittle stress-strain relationship and the dilatancy could be modeled reasonably by the proposed model. As a result it was found that the proposed model can appropriately represent the behavior on weathered soil and granular soil.

Characteristics of Shell-Residual Soil Mixture Deformation by Cyclic Loading (반복재하에 의한 고막껍질-풍화잔류토 혼합토의 변형 특성)

  • Chang, Yong-Chai;Seo, Ji-Woong;Lee, Seung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.47-55
    • /
    • 2009
  • This research has the purpose to examine the potential of shell, a byproduct of maritime products to be utilized as alternative environment-friendly construction material by mixing and applying it with residual soit which is used as burial or filling material to recycle it. To that end, the research looked into the mechanical characteristics of shell through cyclic triaxial test by mixing it with residual soil. With the mixing ratios of shell of 5 groups set at 5.0%, 10.0%, 20.0%, 40.0% and 60.0%, the mixture soils was processed through a series of cyclic triaxial tests. And it was shown that liquefation resistance has limitation in the mixed soils with shell substitute content ratios exceeding 20.0%. To increase the liquefaction resistance of the mixed soil, this research has shown that addition of moderate amount of glass fibers would suffice.

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

The Characteristics of Undrained Shear Strength for Normally Consolidated Decomposed Weathered Mudstone Soil (정규압밀된 재성형 이암풍화토의 비배수 전단특성)

  • 김영수;김기영;문홍득
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.7-18
    • /
    • 2002
  • Generally, natural soils are affected by one-dimensional consolidation so that the behavior characteristic could be somewhat different from the isotropic consolidation specimen. But, due to experimental difficulties and the lack of equipment, the isotropic triaxial tests are mainly performed in most lab. tests. So it seems to be very effective if it is possible to predict pore water pressure and undrained shear strength in the $K_o$ state as the results of isotropic triaxial consolidation test. In this study, isotropic triaxial consolidation test and $K_o$ triaxial consolidation test were performed and we obtained parameters related to pore water pressure ratio using the Hyperbolic model. And then we predicted the behavior of pore water pressure that occurred in the $K_o$ state from the results obtained in the isotropic triaxial cosolidation test through the equation suggested by Lo(1969). It is possible to seize the validity of Lo(1969) equation. Also, considering undrained shear strength obtained from consolidation method in relation with water content, we find that consolidation method have an effect on undrained shear strength. Finally, using the Wroth(1984) equation that is based on the theory of critical state, undrained shear strength in the $K_o$ state was predicted from that of the isotropic triaxial consolidation test. The usefulness of the equation was verified by comparing the predicted value with experimental results.