• Title/Summary/Keyword: 삼차원 선량모델

Search Result 5, Processing Time 0.018 seconds

Algorithm for the design of a Virtual Compensator Using the Multileaf Collimator and 3D RTP System (다엽콜리메터와 삼차원 방사선치료계획장치를 이용한 가상 선량보상체 설계 알고리듬)

  • 송주영;이병용;최태진
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • The virtual compensator which are realized using a multileaf collimator(MLC) and three-dimensional radiation therapy Planning(3D RTP) system was designed. And the feasibility study of the virtual compensator was done to verify that it can do the function of the conventional compensator properly. As a model for the design of compensator, styrofoam phantom and mini water phantom were prepared to simulate the missing tissue area and the calculated dose distribution was produced through the 3D RTP system. The fluence maps which are basic materials for the design of virtual compensator were produced based on the dose distribution and the MLC leaf sequence file was made for the realization of the produced fluence map. Ma's algorithm were applied to design the MLC leaf sequence and all the design tools were programmed with IDL5.4. To verify the feasibility of the designed virtual compensator, the results of irradiation with or without a virtual compensator were analyzed by comparing the irradiated films inserted into the mini water phantom. The higher dose area produced due to the missing tissue was removed and intended regular dose distribution was achieved when the virtual compensator was applied.

  • PDF

Fast Approximate Dose Model Used in Arc Therapy (아크 치료를 위한 고속 근사선량모델 개발)

  • Suh, Tae-Suk;Suh, Doug-Young
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.227-236
    • /
    • 1995
  • Using beam data and accurate 3D dose model, a study of the spatial dose distribution for various arcs was carried out. The dose dirstibution generated by the accurate dose model could be represented by a simple approximate analytic form which is convenient and very efficient for calculating dose distribution iteratively in the optimization procedure. We developed an empirical cylindrical dose model to compute dose for one full rotational arc or partial rotational arc. After a tedious search for fits to a collection of 200 points of accurate dose data, we found simple formular with 7 parameters search. As a consequence, the programs required approximately less than 1 second to compute dose for one single arc on a 20 by 20 matrix (400 points) using fast approximate dose model. In conclusion the fast approximate dose model give dose distributions similar to the accurate dose model, which makes this fast dose model an attractive alternative to the accurate 3D dose model.

  • PDF

Rapid Optimization of Multiple Isocenters Using Computer Search for Linear Accelerator-based Stereotactic Radiosurgery (Multiple isocenter를 이용한 뇌정위적 방사선 수술시 컴퓨터 자동 추적 방법에 의한 고속의 선량 최적화)

  • Suh Tae-suk;Park Charn Il;Ha Sung Whan;Yoon Sei Chul;Kim Moon Chan;Bahk Yong Whee;Shinn Kyung Sub
    • Radiation Oncology Journal
    • /
    • v.12 no.1
    • /
    • pp.109-115
    • /
    • 1994
  • The purpose of this paper is to develop an efficient method for the quick determination of multiple isocenters plans to provide optimal dose distribution in sterotactic radiosurgery. A Spherical dose model was developed through the use of fit to the exact dose data calculated in a 18cm diameter of spherical head phantom. It computes dose quickly for each spherical part and is useful to estimate dose distribution for multiple isocenters. An automatic computer search algorithm was developed using the relationship between the isocenter move and the change of dose shape, and adapted with a spherical dose model to determine isocenter separation and cellimator sizes quickly and automatically. A spheric81 dose model shows a comparable isodose distribution with exact dose data and permits rapid calculations of 3-D isodoses. the computer search can provide reasonable isocenter settings more quickly than trial and error types of plans, while producing steep dose gradient around target boundary. A spherical dose model can be used for the quick determination of the multiple isocenter plans with 3 computer automatic search. Our guideline is useful to determine the initial multiple isocenter plans.

  • PDF

Probabilities of Pulmonary and Cardiac Complications and Radiographic Parameters in Breast Cancer Radiotherapy (유방암의 방사선치료에서 방사선학적 지표에 따른 폐 및 심장의 부작용 확률)

  • Noh, O-Kyu;Park, Sung-Ho;Ahn, Seung-Do;Choi, Eun-Kyung;Lee, Sang-Wook;Song, Si-Yeol;Yoon, Sang-Min;Kim, Jong-Hoon
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Purpose: To evaluate the relationship between the normal tissue complication probability (NTCP) of 3-dimensional (3-D) radiotherapy and the radiographic parameters of 2-dimensional (2-D) radiotherapy such as central lung distance (CLD) and maximal heart distance (MHD). Materials and Methods: We analyzed 110 patients who were treated with postoperative radiotherapy for breast cancer. A two-field tangential technique, a three-field technique, and the reverse hockey stick method were used. The radiation dose administered to whole breast or the chest wall was 50.4 Gy, whereas a 45 Gy was administered to the supraclavicular field. The NTCPs of the heart and lung were calculated by the modified Lyman model and the relative seriality model. Results: For all patients, the NTCPs of radiation-induced pneumonitis and cardiac mortality were 0.5% and 0.7%, respectively. The NTCP of radiation-induced pneumonitis was higher in patients treated with the reverse hockey stick method than in those treated by other two techniques (0.0%, 0.0%, 3.1%, p<0.001). The NTCP of radiation-induced pneumonitis increased with CLD. The NTCP of cardiac mortality increased with MHD ($R^2=0.808$). Conclusion: We found a close correlation between the NTCP of 3-D radiotherapy and 2-D radiographic parameters. Our results are useful to reanalyze the previous 2-D based clinical reports about breast radiation therapy complications as a viewpoint of NTCP.

Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans (고선량률 근접치료계획의 정도보증 프로그램)

  • Han Youngyih;Chu Sung Sil;Huh Seung Jae;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • Purpose: The Planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. Meterials and Methods: As primary input data, the program takes patients'planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were peformed in a $10\times12\times10\;Cm^3$ grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans peformed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients'plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. Results: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of $2.8\%$ in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip legion of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a $3.4\%$ deviation from the TPS plans. Conclusion: The accurate validation of complicate treatment plans is possible with the developed software and the qualify of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.