• Title/Summary/Keyword: 삼차원유동

검색결과 79건 처리시간 0.029초

축류송풍기의 삼차원 유동장 해석 (Three-dimensional analysis of the flow through an axial-flow fan)

  • 김광용;김정엽;정덕수
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.541-550
    • /
    • 1997
  • Computational and experimental investigations on the three-dimensional flowfield through an automotive cooling fan are carried out in this work. Steady, incompressible, three-dimensional, turbulent flow through a rotating axial-flow fan is analyzed with Reynolds averaged Navier-Stokes equations and standard k-.epsilon. turbulence model. The governing equations are discretized with finite-volume approximations in non-orthogonal curvilinear coordinates. Computational static pressures on the casing wall agree well with the experimental data which are measured in this work. And, they are sensitive to the change of tip clearance. The flowfield is not significantly affected by the thickness of the blade. The k-.omega. model gives the static pressure rise on the casing wall which is similar to that with the k-.epsilon. model.

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

다단축류압축기내의 천음속 점성유동에 대한 삼차원 수치해석 (The Calculation of Three-Dimensional Viscous Flow in a Transonic, Multi-Stage Axial Compressor)

  • 이형욱;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.181-189
    • /
    • 1998
  • A numerical study based on the three-dimensional Reynolds averaged Navier-Stokes equations is presented to analyze the transonic flowfield through two-stage axial compressor. Explicit four-step Runge-Kutta scheme is used for solution algorithm, and local time step and implicit residual averaging are introduced for enhancing the convergency. Artificial dissipation model is adopted to assure the stability of solution. The solver is coupled with Baldwin-Lomax model to describe turbulence. To avoid calculating the unsteady flow, a mixing process is modeled at a station between rotating and stationary blade rows. Results show a variety of important physical phenomena. Comparison of the flowfields with and without tip clearance shows that the effect is considerable in this flowfield. Comparisons with experimental data carried out to validate the calculational results show reasonable agreements. Some remedies are also suggested to improve the revealed problems.

  • PDF

삼차원 천이영역에서 원형 실린더 주위의 유동 (Flow over a Circular Cylinder in Three-Dimensional Transitional Regimes)

  • 김진성;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.956-961
    • /
    • 2003
  • Direct numerical simulations of flow over a circular cylinder are performed at two different Reynolds numbers (Re=220 and 300) that correspond to three-dimensional instabilities of mode A and mode B, respectively, to investigate the characteristics of drag and lift at these Reynolds numbers. The drag and lift coefficients are measured locally along the spanwise direction and their characteristics are studied in detail. The variation of total drag in time is large at Re=220, and the total drag becomes minimum when vortex dislocation occurs in the wake. The drag and lift variations in space are also closely associated with the evolution of vortex dislocation at this Reynolds number. At Re=300, vortex dislocation is not found in the wake and temporal variations of drag and lift are much smaller than those at Re=220, but their spatial variations are quite large due to the near-wake secondary vortices existing in the mode B instability.

  • PDF

비정렬 격자 유한체적법을 이용한 삼차원 자유표면 유동 해석 코드의 개발 (Development of a Solver for 3-D Flows with Free Surface using the Finite Volume Method on Unstructured Grids)

  • 임중혁;백제현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.910-915
    • /
    • 2003
  • A Navier-Stokes equation solver for incompressible viscous flows with free surface is developed and tested. This is based upon a fractional time step method and a non-staggered finite volume formulation for unstructured meshes. For time advancement scheme, Adams -Bashforth method for convective term and Crank-Nicolson method for diffusive term are applied. The interface between two fluids with different fluid properties is tracked with Piecewise Linear Interface Calculation(PLIC) Volume-of-Fluid(VOF) methods. Computational results are presented for some test problems: the broken dam, the sloshing in a rectangular tank, the filling of a cylindrical tank.

  • PDF

대동맥 분기관 모델 내 삼차원 유동: In vitro 실험과 수치해석의 비교 (Three-Dimensional Flow in an Aortic Bifurcation Model: Comparison of In Vitro Experiments and Numerical Simulation)

  • 김영호;서상호;유상신
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.15-18
    • /
    • 1995
  • Three-dimensional steady and pulsatile flow experiments and numerical simulations have conducted to investigate the flow characteristics in the aortic bifurcation model. In vitro velocity measurements were made using both laser Doppler anemometry and pulsed Doppler ultrasound velocimetry. In this study, flow phenomena in the aortic bifurcation model are discussed extensively and the numerical results are compared with experimental results.

  • PDF

양배수용 사류펌프 내 삼차원 유동에 대한 수치적 연구 (Numerical Study on Three-Dimensional Flow in a Mixed-Flow Pump for Irrigation and Drainage)

  • 김진혁;안형진;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권1호
    • /
    • pp.17-22
    • /
    • 2010
  • In this paper, numerical study on a mixed-flow pump for irrigation and drainage has been performed based on three-dimensional viscous flow analysis. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved by the commercial CFD code ANSYS CFX-11.0. A structured grid system is constructed in the computational domain, which has O-type grids near the blade surfaces and H/J-type grids in other regions. The numerical results were validated with experimental data for the heads and efficiencies at different flow coefficients. The efficiency at the design flow coefficient is evaluated with the variation of two geometric variables related to area of discharge and length of the vane in the diffuser. The results show that efficiency of the mixed-flow pump at the design flow coefficient is improved by the modifications of the geometry.

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensinal Thermo-Fluid Flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.79-87
    • /
    • 2002
  • The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow-mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. NJl5, NJ25, NJ35, NJ45, which were designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard $\kappa-\epsilon$ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant, but the twist angle of mixing vane is changed. The results with three turbulence models( $\kappa-\epsilon$, $\kappa-\omega$, RSM) were compared with experimental data.

  • PDF

고압 이단 링블로워의 삼차원 유동해석 및 성능평가 (FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER)

  • 이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.85-89
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the mid-plane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

사각덕트내 직각엘보우를 지난 유체유동에 관한 연구 (Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.