• Title/Summary/Keyword: 삼차원설계

Search Result 114, Processing Time 0.021 seconds

A Study on the Development of Ultrasonography Guide using Motion Tracking System (이미지 가이드 시스템 기반 초음파 검사 교육 기법 개발: 예비 연구)

  • Jung Young-Jin;Kim Eun-Hye;Choi Hye-Rin;Lee Chae-Jeong;Kim Seo-Hyeon;Choi Yu-Jin;Hong Dong-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1067-1073
    • /
    • 2023
  • Breast cancer is one of the top three most common cancers in modern women, and the incidence rate is increasing rapidly. Breast cancer has a high family history and a mortality rate of about 15%, making it a high-risk group. Therefore, breast cancer needs constant management after an early examination. Among the various equipment that can diagnose cancer, ultrasound has the advantage of low risk and being able to diagnose in real time. In addition, breast ultrasound will be more useful because Asian women's breasts are denser and less sensitive. However, the results of ultrasound examinations vary greatly depending on the technology of the examiner. To compensate for this, we intend to incorporate motion tracking technology. Motion tracking is a technology that specifies and analyzes a location according to the movement of an object in a three-dimensional space. Therefore, real-time control is possible, and complex and fast movements can be recorded in real time. We would like to present the production of an ultrasound examination guide using these advantages.

Finite Element Analysis of Stress Distribution on Telescopic System for Mandibular Implant Supported Overdenture (이중관 구조 하악 임플랜트 피개의치의 응력 분포에 관한 유한요소법적 분석)

  • Oh, Jung-Ran;Woo, Yi-Hyung;Lee, Sung-Bok;Bak, Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.359-371
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the stress distribution in mandibular implant overdentures with telescopic crowns compared to bar attachment. Material and methods: Three-dimensional finite element models consisting of the mandibular bone, 4 implants, and primary bar-splinted superstructure or secondary splinted superstructure with telescopic crowns were created. Vertical and oblique loads were directed onto the occlusal areas of the superstructures to simulate the maximal intercuspal contacts and working contacts such as group function occlusion. Maximum stress and stress distribution were analysed in mandibular bone, implant abutments, and superstructures. Results: 1. In comparison of von Mises stress on mandibular bone, telescopic overdenture had a little lower stress values in vertical load and working side load except oblique load. In the mandible, the telescopic overdenture distributed more uniform stress than the bar overdenture. 2. In comparison of von Mises stress on implant abutments, telescopic overdenture had much lower stress values in all load conditions. In implant abutments, the telescopic overdenture distributed stress similar to the bar overdenture. Stress was concentrated on the distal surfaces of the posterior implant abutments in both mandibular overdentures. 3. In comparison of von Mises stress on superstructures, the telescopic overdenture had much more stress values in all load conditions. However, the telescopic overdenture distributed more uniform stress on superstructure than the bar overdenture. In the bar overdenture, stress was concentrated on each cental area of bar structures and connected area between implant abutments and bar structures. Conclusion: In the results of this study, the telescopic overdenture had lower stress values than the bar overdenture in mandibular bone and implant abutments, but more stress values in superstructures. However, if optimal material was selected in making superstructures, the telescopic overdenture was compared to the bar overdenture in stress distribution.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

Effect of Bone Quality on Insertion Torque during Implant Placement; Finite Eelement Analysis (임플란트 식립 시 골질이 주입회전력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Jeong, Jae Doug;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.109-123
    • /
    • 2009
  • The aim of the study was to assess the influence of insertion torque of bone quality and to compare axial force, moment and von Mises stress using finite element analysis of plastoelastic property for bone stress and strain by dividing bone quality to its thickness of cortical bone, density of trabecular bone and existence of lower cortical bone when implant inserted to mandibular premolar region. The $Br{\aa}nemark$ MKIII. RP implant and cylindrical bone finite model were designed as cortical bone at upper border and trabecular bone below the cortical bone. 7 models were made according to thickness of cortical bone, density of trabecular bone and bicortical anchorage and von Mises stress, axial force and moment were compared by running time. Dividing the insertion time, it seemed 300msec that inferior border of implant flange impinged the upper border of bone, 550msec that implant flange placed in middle of upper border and 800msec that superior border of implant flange was at the same level as bone surface. The maximum axial force peak was at about 500msec, and maximum moment peak was at about 800msec. The correlation of von Mises stress distribution was seen at both peak level. The following findings were appeared by the study which compared the axial force by its each area. The axial force was measured highest when $Br{\aa}nemark$ MKIII implant flange inserts the cortical bone. And maximal moment was measured highest after axial force suddenly decreased when the flange impinged at upper border and the concentration of von Mises stress distribution was at the same site. When implant was placed, the axial force and moment was measured high as the cortical bone got thicker and the force concentrated at the cortical bone site. The influence of density in trabecular bone to axial force was less when cortical bone was 1.5 mm thick but it might be more affected when the thickness was 0.5 mm. The total axial force with bicortical anchorage, was similar when upper border thickness was the same. But at the lower border the axial force of bicortical model was higher than that of monocortical model. Within the limitation of this FEA study, the insertion torque was most affected by the thickness of cortical bone when it was placed the $Br{\aa}nemark$ MKIII implant in premolar region of mandible.