• Title/Summary/Keyword: 삼상 슬러리

Search Result 7, Processing Time 0.027 seconds

Scaling of Gas-Slurry Mass transfer in Three-phase Bubble Column Reactors (삼상슬러리 기포탑 반응기에서 기체-슬러리 물질전달의 Scaling)

  • Lim, Hyunoh;Seo, Myungjae;Kang, Yong;Jung, Heon;Lee, Hotae;Kim, Sangdon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.111.2-111.2
    • /
    • 2010
  • 삼상슬러리 기포탑 반응기의 설계 및 Scale-up을 위하여 기포탑의 직경변화에 따른 기체-슬러리 계면에서의 물질전달 현상의 Similarity를 검토하고, 기체-슬러리 계면에서의 물질전달 현상과 슬러리 기포탑 반응기의 운전변수 및 반응물들의 물성들과의 연관성을 고찰하기 위하여 삼상슬러리 기포탑의 물질전달계(System)에서 주요 파라메타를 도출하였으며, 이들 파라메터들을 이용하여 슬러리 기포탑반응기의 물질전달 Scaling을 검토하였다. 물질전달계의 주요제어인자로는 기체-액체 부피물질전달계수($k_La$), 슬러리상의 확산도($D_{SL}$), 기포탑의 직경(D), 기포탑 반응기에 유입되는 기체의 유입속도($U_G$), 기포탑 반응기 내부의 연속상인 슬러리상의 표면장력(${\sigma}_{SL}$), 슬러리상과 기체상간의 밀도차(${\rho}_{SL}-{\rho}_G$) 그리고 슬러리상의 점도(${\mu}_{SL}$)등 슬러리 상의 물성을 선정하였으며 중력가속도(g)를 선정하였다. 물질전달계의 Scling을 검토하기위하여 이를 재구성하였으며 기포탑 반응기의 구조와 직경이 변화함에 따라 이들 무차원군의 변화양상을 고찰하였다. 실험적으로 측정된 물질전달계수와 Scaling에 의해 예측된 물질전달계수를 비교 검토함으로써 본 연구의 Correlation의 적용범위를 제시하였다.

  • PDF

Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column (삼상 슬러리 기포탑의 세 기능영역 체류량 특성)

  • Jang, Ji Hwa;Lim, Dae Ho;Kang, Yong;Jun, Ki Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • Three kinds of functional regions such as continuous slurry(${\varepsilon}_f$), bubble(${\varepsilon}_b$) and wake(${\varepsilon}_w$) regions were identified, and the individual phase holdups of each functional region were determined in a three-phase slurry bubble column of 0.152 m ID. The holdups of bubble and wake were measured by adopting the electrical resistivity probe method. Effects of gas velocity and solid concentration in the slurry phase on the individual holdups of functional regions in the column were discussed. The holdup of continuous slurry phase decreased but that of bubble or wake increased, with an increase in the gas velocity in the column. The increase of solid content in the slurry phase could lead to the increase in the holdup of continuous slurry phase but decrease in the bubble or wake holdup. The portion of wake holdup was in the range of 15~40% of the bubble holdup, which decreased with increasing gas velocity or solid content in the slurry phase. The individual holdups of three functional regions were well correlated with operating variables within this experimental conditions.

Analysis of Hydrodynamic Similarity of Pressurized Three-Phase Slurry Bubble Column for its Design and Scale-up (가압 삼상슬러리 기포탑의 설계 및 Scale-up을 위한 수력학적 Similarity 해석)

  • Seo, Myung Jae;Lim, Dae Ho;Jin, Hae Ryong;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.720-726
    • /
    • 2009
  • Hydrodynamic similarity was investigated in pressurized three-phase slurry bubble columns by selecting the bubble holdup and pressure drop as objective functions, for the effective design and scale-up of it. In addition, effects of operating variables on the bubble holdup with variation of column diameter were also analyzed. Gas velocity($U_G$), viscosity(${\mu}_{SL,eff}$) and surface tension(${\rho}_{SL}$) of slurry phase, density difference between the slurry and gas phases(${\rho}_{SL}-{\rho}_G$) depending on the operating pressure, pressure drop per unit length(${\Delta}P/L$), column diameter(D) and gravitational acceleration(g) were chosen as governing parameters in determining the bubble holdup and pressure drop in the column. From the dimensional analysis, four kinds of dimensionless groups were derived from the 7 parameters and 4 fundamental dimensions. Effects of dimensionless groups such as Reynolds, Froude and Weber numbers on the bubble holdup in the column were discussed. The pressure drop and bubble holdup could be predicted from the correlation of dimensionless groups effectively, which could be used as useful information for the design and scale-up of pressurized slurry bubble columns.

Mass Transfer Characteristics in Pressurized Three-phase Slurry Bubble Columns with Variation of Column Diameter (가압 삼상슬러리 기포탑에서 직경변화에 따른 기체-액체 물질전달 특성)

  • Seo, Myung Jae;Lim, Dae Ho;Shin, Ik Sang;Son, Sung Mo;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.459-464
    • /
    • 2009
  • Gas-liquid mass transfer characteristics were investigated in pressurized three-phase slurry bubble columns with variation of column diameter. Effects of gas velocity, operating pressure, liquid viscosity, solid content in the slurry phase and column diameter on the gas-liquid volumetric mass transfer coefficient($k_La$) were determined. The effects of operating variables on the mass transfer coefficient tended to change with variation of column diameter. The mass transfer coefficient increased with increasing gas velocity or operating pressure but decreased with increasing column diameter, liquid viscosity or solid concentration in the slurry phase. The increase trend of $k_La$ value with increasing gas velocity and the decrease trend of $k_La$ value with increasing liquid viscosity, tended to decrease gradually with increasing column diameter. However, the effects of operating pressure and solid concentration in the slurry phase on the $k_La$ value did not change considerably with variation of column diameter. The values of $k_La$ were well correlated with operating variables with in this experimental conditions as $k_La=0.02D^{-0.26}U_G^{0.28}P^{0.43}{\mu}_L^{-0.04}S_c^{-0.35}$.

Effects of Liquid Surface Tension on the Heat Transfer Coefficient in a Three-Phase Slurry Bubble Column (삼상슬러리 기포탑에서 액상의 표면장력이 열전달 계수에 미치는 영향)

  • Lim, Ho;Lim, Dae Ho;Jin, Hae-Ryong;Kang, Yong;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.499-504
    • /
    • 2012
  • Characteristics of overall heat transfer were investigated in a three-phase slurry bubble column with relatively low surface tension media, which has been frequently encountered in the fields of industry. The heat transfer phenomena was examined in the system which was composed of a coaxial vertical heater and a proper of bubble column. The heat transfer coefficient was estimated from the measured mean value of temperature difference between the heater surface and the column proper at the steady state condition. Effects of gas velocity ($U_G$), solid fraction in the slurry phase ($C_S$) and surface tension (${\sigma}_L$) of continuous liquid media on the overall heat transfer coefficient (h) in the bubble column were determined. The mean value of temperature difference was estimated from the data of temperature difference fluctuations with a variation of time. The amplitude and mean value of temperature difference fluctuations with respect to the elasped time appeared to decrease with decreasing the surface tension of liquid phase. The overall heat transfer coefficient between the immersed heated and the bubble column increased with an increase in the gas velocity or solid fraction in the slurry phase, but it decreased with an increase in the surface tension of continuous liquid media. The overall heat coefficient in the slurry bubble column with relatively low surface tension media was well correlated in term of operating variables and dimensionless groups within this experimental conditions.

Gas Hydrate Phase Equilibria of $CO_2+H_2$ Mixture in Silica Gel Pores for the Development of Pre-combustion Capture (연소 전 이산화탄소 회수기술을 위한 실리카겔 공극 내에서의 이산화탄소+수소 혼합가스 하이드레이트의 상평형)

  • Kang, Seong-Pil;Jang, Won-Ho;Jo, Wan-Keun
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.258-264
    • /
    • 2009
  • Thermodynamic measurements were performed to show the possibility of recovering $CO_2$ from fuel gas (the mixture of $CO_2$ and $H_2$) by forming gas hydrates with water where water was dispersed in the pores of silica gel particles having nominal 100 nm of pore diameter. The hydrate-phase equilibria for the ternary $CO_2+H_2$+water in pores were measured and $CO_2$ concentrations in vapor and hydrate phase were determined under the hydrate-vapor two phase region at constant 274.15 K. It was shown that the inhibition effect appeared due to silica gel pores, and the corresponding equilibrium dissociation pressures became higher than those of bulk water hydrates at a specific temperature. In addition, direct measurement of $CO_2$ content in the hydrate phase showed that the retrieved gas from the dissociation of hydrate contained more than 95 mol% of $CO_2$ when 42 mol% of $CO_2$ and balanced Hz mixture was applied. Compared with data obtained in case of bulk water hydrates, which showed just 83 mol% of $CO_2$ where 2-stage hydrate slurry reactor was intended to utilize this property, the hydrate formation in porous silica gel has enhanced the feasibility of $CO_2$ separation process. Hydrate formation as not for slurry but solid particle makes it possible to used fixed bed reactor, and can be a merit of well-understood technologies in the industrial field.