• Title/Summary/Keyword: 살초 선택성

Search Result 16, Processing Time 0.026 seconds

Understanding the protox inhibition activity of novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives using comparative molecular field analysis (CoMFA) methodology (비교 분자장 분석 (CoMFA) 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluoro-benzene 유도체들의 Protox 저해 활성에 관한 이해)

  • Sung, Nack-Do;Song, Jong-Hwan;Yang, Sook-Young;Park, Kyeng-Yong
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.3
    • /
    • pp.151-161
    • /
    • 2004
  • Three dimensional quantitative structure-activity relationships (3D-QSAR) studies for the protox inhibition activities against root and shoot of rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new A=3,4,5,6-tetrahydrophthalimino, B=3-chloro-4,5,6,7-tetrahydro-2H-indazolyl and C=3,4-dimethylmaleimino group, and R-group substituted on the phenyl ring in 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2chloro-4-fluorobenzene derivatives were performed using comparative molecular field analyses (CoMFA) methodology with Gasteiger-Huckel charge. Four CoMFA models for the protox inhibition activities against root and shoot of the two plants were generated using 46 molecules as training set and the predictive ability of the each models was evaluated against a test set of 8 molecules. And the statistical results of these models with combination (SIH) of standard field, indicator field and H-bond field showed the best predictability of the protox inhibition activities based on the cross-validated value $r^2_{cv.}$ $(q^2=0.635\sim0.924)$, conventional coefficient $(r^2_{ncv.}=0.928\sim0.977)$ and PRESS value $(0.091\sim0.156)$, respectively. The activities exhibited a strong correlation with steric $(74.3\sim87.4%)$, electrostatic $(10.10\sim18.5%)$ and hydrophobic $(1.10\sim8.30%)$ factors of the molecules. The steric feature of molecule may be an important factor for the activities. We founded that an novel selective and higher protox inhibitors between the two plants may be designed by modification of X-subsitutents for barnyardgrass based upon the results obtained from CoMFA analyses.

Development of Selective Heribicide for Control of Weeds in Turf (잔디밭 잡초방제(雜草防除)를 위한 선택성(選擇性) 제초제(除草劑)의 개발(開發)에 관한 연구(硏究))

  • Han, Seong-Soo
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.186-199
    • /
    • 1987
  • This study was carried out to investigate the growth of Korean lawn grass (Zoysia japonica Steud.), penncross bentgrass (Agrostis palustris Huda) and seaside bentgrass (Agrostis spp.) under application of 21 pre- and post-emergence herbicides and the weeding effect of 14 annual and 4 perennial weeds with them for the purpose of the systematic chemical weed control in turf. The results obtained were as follows; 1. Napropamide, napropamide + triclopyr and benefin were safe for Korean lawn grass and two kinds of bentgrasses when they were treated at 4 and 25 days after transplanting of turfgrasses. Simazine, lenacil and bentazon inhibited the growth of bentgrasses, but not Korean lawn grass. 2. The preemergence application of simazine, benefin and napropamide + simazine showed excellent control for Digitaria sanguinalis, Cyperus amuricus, Chenopodium album, Portulaca oleracea and Centipeda minima. Lenacil was excellent for control of all the tested weeds except Chenopodium album, napropamide excellent for them except Cyperus amuricus and Portulaca oleraces, and bentazon good for them except Digitaria sanguinalis. When simazine was treated with either napropamide or triclopyr at preemergence of weeds, weeding effect increased without inhibition of lawn growth. 3. The postemergence application of mecoprop, bentazon, benefin + dicamba and benefin + mecoprop was safe to bentgrasses. All the tested postemergence herbicides except simazine + atrazine did not inhibit the growth of Korean lawn grass. 4. Other postemergence herbicides mecoprop and triclopyr were excellent for the control of Echinochloa crusgalli and those except benefin and mecoprop excellent for Kummerovia striata. Digitaria sanguinalis was controlled by treating with all the tested post emergence herbicides and Cyperus amuricus controlled only by bentazon. 5. The growth rates of bentgrasses treated with simazine, lenacil and napropamide + simazine were lower than that of hand-weeded check, and those of benefin, bentazon, napropamide, napropamide + triclopyr, stomp, bensulide and triclopyr were higher than that one when applied at spring season. Korean lawn grass growth appeared to be good under application of all the tested preemergence herbicides at spring. Lanacil and bentazone showed poor control of Echinochloa crusgalli, and bensulide showed poor control of Erigeron canadensis. Also, napropamide and bentazon were not good for Kummerovia striata control. However, at the respective rates of all the tested herbicides, these three weeds were greatly controlled by 85-100% of weeding effect. 6. At the application of autumn season, bentazon, napropamide, pendimethalin, benefin, napropamide + triclopyr, bensulide and triclopyr seemed to be safe against three kinds of turfgrasses. But simazine, napropamide + simazine inhibited the growth of bentgrasses except Korean lawn grass. In terms of weed control performance, triclopyr was poor for controlling Echinochloa crusgalli and bentazon and stomp for Poa annua, napropamide, benefin and bensulide for Stellaria medico. Stellaria uliginosa and Cerastium caespitosum were well controlled by all the tested preemergence herbicides. 7. Korean lawn grass was safe when paraquat and glyphosate were treated at the dormanant season of turfgrass. These herbicides showed excellent controll of Poa annua but poor control of perennials in order of Trifolium repens < Miscanthus sinensis < Calystegia japonica < Artemisia asiatica. 8. In field test, all of 19 herbicides seemed to be safe when treated at Korean lawn grass. All of 10 preemergence herbicides were excellent for controlling annual weeds, but poor for perennial ones. All of 9 postemergence herbicides showed a excellent control for broad-leaf weeds.

  • PDF

Inhibition of protoporphyrinogen oxidase activity and selectivity of new compound EK-5439 (신규 화합물 EK-5439의 선택성 및 protoporphyrinogen oxidase 저해활성)

  • Hong, K.S.;Kim, H.R.;Jeon, D.J.;Lee, B.H.;Song, J.H.;Cho, K.Y.;Hwang, I.T.
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.2
    • /
    • pp.79-87
    • /
    • 2004
  • 3-Chloro-2-[4-chloro-2-fluoro-5-(5-methyl-3-phenyl-4,5-dihydroisoxazol-5-ylmethoxy)-phenyl]-4,5,6,7-tetrahy dro-2H-indazole(EK-5439) demonstrated rice selectivity and herbicidal activity on annual weeds, such as Echinochloa oryzicola, Monochoria vaginalis, Lindernia pyxidaria, Rotala indica, Aneilema keisak, Cyperus difformis, and Ludwigia prostrata at doses of 16-63 g a.i./ha. However, the application window was limited from pre-emergence to 5 days after transplanting. The control efficacy of EK-5439 on barnyardgrass was 4 times higher than that of oxadiazon. EK-5439 was excellently safe to the 16 different transplanted rice cultivars treated 2 days after transplanting. These compounds have the mechanism of action on the chlorophyll biosynthesis like protoporphyrinogen IX oxidase inhibitors.

A prognosis discovering lethal-related genes in plants for target identification and inhibitor design (식물 치사관련 유전자를 이용하는 신규 제초제 작용점 탐색 및 조절물질 개발동향)

  • Hwang, I.T.;Lee, D.H.;Choi, J.S.;Kim, T.J.;Kim, B.T.;Park, Y.S.;Cho, K.Y.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2001
  • New technologies will have a large impact on the discovery of new herbicide site of action. Genomics, combinatorial chemistry, and bioinformatics help take advantage of serendipity through tile sequencing of huge numbers of genes or the synthesis of large numbers of chemical compounds. There are approximately $10^{30}\;to\;10^{50}$ possible molecules in molecular space of which only a fraction have been synthesized. Combining this potential with having access to 50,000 plant genes in the future elevates tile probability of discovering flew herbicidal site of actions. If 0.1, 1.0 or 10% of total genes in a typical plant are valid for herbicide target, a plant with 50,000 genes would provide about 50, 500, and 5,000 targets, respectively. However, only 11 herbicide targets have been identified and commercialized. The successful design of novel herbicides depends on careful consideration of a number of factors including target enzyme selections and validations, inhibitor designs, and the metabolic fates. Biochemical information can be used to identify enzymes which produce lethal phenotypes. The identification of a lethal target site is an important step to this approach. An examination of the characteristics of known targets provides of crucial insight as to the definition of a lethal target. Recently, antisense RNA suppression of an enzyme translation has been used to determine the genes required for toxicity and offers a strategy for identifying lethal target sites. After the identification of a lethal target, detailed knowledge such as the enzyme kinetics and the protein structure may be used to design potent inhibitors. Various types of inhibitors may be designed for a given enzyme. Strategies for the selection of new enzyme targets giving the desired physiological response upon partial inhibition include identification of chemical leads, lethal mutants and the use of antisense technology. Enzyme inhibitors having agrochemical utility can be categorized into six major groups: ground-state analogues, group specific reagents, affinity labels, suicide substrates, reaction intermediate analogues, and extraneous site inhibitors. In this review, examples of each category, and their advantages and disadvantages, will be discussed. The target identification and construction of a potent inhibitor, in itself, may not lead to develop an effective herbicide. The desired in vivo activity, uptake and translocation, and metabolism of the inhibitor should be studied in detail to assess the full potential of the target. Strategies for delivery of the compound to the target enzyme and avoidance of premature detoxification may include a proherbicidal approach, especially when inhibitors are highly charged or when selective detoxification or activation can be exploited. Utilization of differences in detoxification or activation between weeds and crops may lead to enhance selectivity. Without a full appreciation of each of these facets of herbicide design, the chances for success with the target or enzyme-driven approach are reduced.

  • PDF

Effects of Mixture and Systematic Application of Herbicides on Weed Control and Yield in Transplanted Rice (이앙답(移秧畓)에서 제초제(除草劑)의 혼합(混合), 조합처리(組合處理)가 제초효과(除草效果) 및 벼 수량(收量)에 미치는 영향)

  • Kim, J.K.;Ku, Y.C.;Lee, J.H.
    • Korean Journal of Weed Science
    • /
    • v.2 no.1
    • /
    • pp.20-30
    • /
    • 1982
  • A field experiment was conducted in 1981 at the Crop Experiment Station, Suweon, Korea, in machine transplanted paddy rice field, to study the effectiveness of single herbicide, mixture, and systematic application of herbicides on diversity of weed control spectrum. The rice variety planted was Taebaegbyeo, Indica ${\times}$ Japonica cross bred. Experimental field was dominated by Echinochtoa crusgalli, Eleocharis kuroguwai, and Scirpus hotarui, and importance values based on dry weight of these weeds were 89%, 5%, and 3%, respectively. The mixture or systematic treatments of herbicide were generally more effective than single herbicide applications on weed control. Coefficients of similarity based on floristic composition after herbicide application between Perfluidone (5G) and Chloromethoxynil (7G), and between Pertluidone (5G) and Bifenox (7G), and between Perfluidone (5G) and three types of Butachlor (6G) were low, and these sets seemed to be a good mixture herbicide in paddy fields. While, Perfluidone (5G) had low coefficient of similarity with other single herbicides tested. The information on coefficient of similarity could be used as parameter for selecting herbicides to increase the efficiency of herbicidal performance. Simpson's indices from Butachlor (3.5G)/SL-49 (7G), Butachlor (3.5G)/Pyrazolate (6G), and Perfluidone (5G) treatments were high, and these herbicide treatments tended to the weed community type simplified, while the indices from Perfluidone (5G) + Chloromethoxynil (7G), Butachlor (6G) fb Perftuidone (5G), and Butachlor (4G)/Naproanilide (6G) treatments were low, and these herbicide treatments caused to the community type diversified in terms of floristic composition.

  • PDF

Identification of Streptomyces scopuliridis KR-001 and Its Herbicidal Characteristics (Streptomyces scopuliridis KR-001의 분리 동정 및 잡초 방제효과)

  • Lee, Boyoung;Kim, Jae Deok;Kim, Young Sook;Ko, Young Kwan;Yon, Gyu Hwan;Kim, Chang-Jin;Koo, Suk Jin;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 2013
  • With increasing environmental issues from synthetic chemical herbicides, microbe-originated herbicides could be a fascinating alternative in current agriculture. We isolated Streptomyces strains that produced herbicidal active metabolite(s) against a grass weed Digitaria sanguinalis. According to the result from 16S rDNA sequence comparison with the close strains, the best isolate (Code name MS-80673) was identified as Streptomyces scopuliridis KR-001. The closest type strain was Streptomyces scopuliridis RB72 which was previously reported as a bacteriocin producer. The optimal culture condition of S. scopuliridis KR-001 was $28^{\circ}C$, pH 7.0 and culture period 4 to7 days. Both of soil and foliar application of the crude culture broth concentrate was effective on several troublesome or noxious weed species such as a Sciyos angulatus in a greenhouse and field condition. Phytotoxic symptoms of the culture broth concentrate of S. scopuliridis KR-001 by foliar application were wilting and burndown of leaves, and stems followed by discoloration and finally plant death. In crops such as rice, wheat, barley, hot pepper and tomato, growth inhibition was observed. These results suggest that the new S. scopuliridis KR-001 strain producing herbicidal metabolites may be a new bio-herbicide candidate and/or may provide a new lead molecule for a more efficient herbicide.