• Title/Summary/Keyword: 살물선

Search Result 7, Processing Time 0.022 seconds

선체구조설계 해석 및 진동소음해석 시스템

  • 나승수;정태영;신종계;김재승;송재영
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.20-26
    • /
    • 1993
  • 본 연구는 CSDP-선체 CAD 시스템 개발'4' 세부과제의 일환으로 수행되었으며 세부과제는 선체 구조 설계 기능을 전산화하기 위한 목표를 설정하고 CSDP 연구사업의 첫해년도부터 지금까지 4년간 수행하였다. 1차년도('88년∼'89년)에는 그 당시까지 단편적으로 개발된 구조설계 프로그 램을 통합하여 살물선 중앙부에 대해 선급규정에 의한 종강도 부재의 배치 및 치수결정 프로그 램을 개발하였다. 2차년도('89년∼'90년)에는 1차년도의 연구결과를 힁부재 및 힁격벽 부재까지 확장하여 살물선 중앙부의 종강도 부재, 힁격벽 부재의 배치 및 치수결정 프로그램을 개발하여 살물선 중앙부의 구조설계를 지원하는 프로그램을 완성하였다. 3차년도('91년∼'92년)에는, 이 중선각 유조선에 대한 관심이 고조되고 있는 바, 동 세부과제에서도 조선소의 요구에 따라 대상 선박을 살물선에서 이중선각 유조선으로 확장하고, 기존의batch방식을 대화식으로 교체하여 선급규정(DnV, L1oyd)에 의한 종강도 부재의 설계 기능과, 간이 해석에 의한 대화식 이중선각 유조선 중앙부의 구조배치 및 치수결정 기능을 갖는 프로그램(ISSMID_T)을 개발하였다. 당해 연도인 4차년도에는, 3차년도까지 개발한 프로그램의 기능, 성능을 보완 확장하였고, 또한 조선 전용 선체 CAD시스템(AUTOKON)과의 Interface도 삼성중공업과 공동으로 개발하였다.

  • PDF

A Study on Minimum Weight Design of Horizontal Corrugated Bulkheads for Chemical Tankers (화학제품 운반선 수평 파형격벽의 최소중량설계에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.51-56
    • /
    • 2016
  • Corrugated bulkheads have many advantages compared to stiffened bulkheads, and they have thus been used for the cargo tank bulkheads of commercial vessels, such as bulk carriers, product oil carriers, and chemical tankers. Various studies have been carried out to find the optimum corrugation shape for bulk carriers, but optimum design studies for chemical tankers with bulkheads made of high-priced materials are scarce. The purpose of this study is to develop a minimum weight design method for horizontal corrugated bulkheads for a chemical tanker. An evolution strategy (ES) that searches for a reliable global optimum point was applied as an optimization technique, and the structural safety of the optimum design was verified through structural analysis using the finite element method (FEM). The results were compared with those of an existing ship, which showed a weight reduction of about 14% with equivalent structural strength.

On the Weight Reduction of Longitudinal Members of Mid-Sized Bulk Carrier Considering the Minimum Shear Force according to Compartment Arrangement based on H-CSR (구획배치에 따른 최소 전단력을 고려한 H-CSR 기반 중형 살물선 종강도 부재의 중량 절감 방안 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Bae, Sang-Don
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.352-359
    • /
    • 2017
  • Because the Energy Efficiency Design Index(EEDI) came into effect in 2013, it is necessary to develop a new technology to overcome $CO_2$ emission regulations. In structural design viewpoint, lots of researches are carried out to develop eco-friendly and high fuel efficiency ships by weight reduction. By using the automated compartment arrangement system and automated structural design algorithm which were developed by the authors, new researches are performing to combine the above two systems. However, the effect of weight reduction was not significant because structural designs by using these systems for the midship part was carried out only focused on the minimum still water bending moment. In this paper, at first, good compartment arrangements which give the minimum still water bending moment and(or) shear force were chosen by using the automated compartment system. And then, influence of shear force on weight reduction was investigated by using the automated structural design algorithm considering longitudinal strength, local strength and shear strength of longitudinal members in cargo holds. Conclusively, it is necessary to consider the minimum still water bending moment and shear force simultaneously to reduce the weight of mid-sized bulk carrier. Also, good compartment arrangement which gives much more weight reduction compared with existing ship was proposed.

Reliability Analysis of Ship′s Longitrdinal Strength for the Rational Ship Structural Design (선박구조설계 합리화를 위한 선체 종강도의 신뢰성 해석)

  • Oi-H. Kim;Byung-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The application of the reliability analysis is investigated as a probabilistic approach to the assessment of ship's structural strength and to the establishment of design format for longitudinal strength. Reliability analyses are carried out for 34 ships of tankers and bulk carriers built in HHI for some failure modes such as tensile yielding, compressive buckling and ultimate strength of hull girder. The safety assessment of each ship, the calculation of sensitivity factors and the derivation of target reliability index are performed. As results. the difference of reliability indices among ships is great for all modes. To provide more uniform levels of safety the establishment of new strength criteria using partial safety factors is performed. The partial safety factors for the design format are obtained according to the AFOSM method and the reliability-conditioned(RC) method. Finally, a design format using partial safety factors has been proposed. We could find out that new strength criteria can produce consistent reliability indices which are close to the target value.

  • PDF

Parametric Designs of a Pre-swirl Duct for the 180,000DWT Bulk Carrier Using CFD (CFD를 이용한 180,000 DWT Bulk Carrier용 Pre-Swirl Duct의 파라메트릭 설계)

  • Cho, Han-Na;Choi, Jung-Eun;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.343-352
    • /
    • 2016
  • In this study, a pre-swirl duct for the 180,000 DWT bulk carrier has been designed from a propulsion standpoint using CFD. The stern duct - designed by NMRI - was selected as the initial duct. The objective function is to minimize the value of delivered power in model scale. Design variables of the duct include duct angle, diameter, chord length, and vertical and horizontal displacements from the center. Design variables of the stators are blade number, arrangement angle, chord length, and pitch angle. A parametric design was carried out with the objective function obtained using CFD. Reynolds averaged Navier-Stokes equations have been solved; and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. MRF and sliding mesh models have been applied to simulate the actuating propeller. A self-propulsion point has been obtained from the results of towing and self-propelled computations, i.e., form factor obtained from towing computation and towing forces obtained from self-propelled computations of two propeller rotating speeds. The reduction rate of the delivered power of the improved stern duct is 2.9%, whereas that of the initial stern duct is 1.3%. The pre-swirl duct with one inner stator in upper starboard and three outer stators in portside has been designed. The delivered power due to the designed pre-swirl duct is reduced by 5.8%.

Development and CFD Analysis of a New Type Pre-Swirl Duct for 176k Bulk Carrier (176k Bulk Carrier에 대한 신개념 타입의 Pre-Swirl Duct의 개발 및 CFD 해석)

  • Yoo, Gwang Yeol;Kim, Moon Chan;Shin, Yong Jin;Shin, Irok;Kim, Hyun Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.373-382
    • /
    • 2019
  • This paper shows numerical results for the estimation of the propulsor efficiency of Pre-Swirl Duct for 176k bulk carrier as well as its design method. Reynolds averaged Navier-Stokes equations have been solved and the k-epsilon model applied for the turbulent closure. The propeller rotating motion is determined using a sliding mesh technique. The design process is divided into each part of Pre-Swirl Duct, duct and Pre-Swirl Stator. The design of duct was performed first because it is located further upstream than Pre-Swirl Stator. The distribution of velocity through the duct was analyzed and applied for the design of Pre-Swirl Stator. The design variables of duct include duct angle, diameter, and chord length. Diameter, chord length, equivalent angle are considered when designing the Pre-Swirl Stator. Furthermore, a variable pitch angle stator is applied for the final model of Pre-Swirl Duct. The largest reduction rate of the delivered power in model scale is 7.6%. Streamlines, axial and tangential velocities under the condition that the Pre-Swirl Duct is installed were reviewed to verify its performance.

A Study on the Quality Assessment Using QFD & FMEA (QFD와 FMEA를 이용한 품질평가에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.78-87
    • /
    • 2017
  • Recently, the quality of a product or system has becoming increasingly important as it means customer satisfaction. The function, which is recognized as a nature of this quality, means how it functions well so it is the closest to the customer satisfaction. On the other hand, it is becoming more important as safety is closely related to destruction or human injury from accidents for engineers who handle large-scaled structures, such as ships. This study analyzed the function using quality function development (QFD) and considering the function and safety, which are being recognized as important in the structure. In addition, the safety and the quality analysis method based on the customers' needs was analyzed using failure mode and influence analysis (FMEA). In addition, the supplementary materials that are important in terms of the aspect of safety and function for the quality enhancement of a hatchway system were determined by applying a bulk carrier and hatchway. As a result, there are commonly understood items in important supplementary materials and parts, which are determined individually in terms of function and safety, because they can enhance both the function and safety simultaneously. This study shows that designers can improve the quality of products and systems by enhancing these supplementary materials and parts with greater interest.