• Title/Summary/Keyword: 살균제 방제효과

Search Result 138, Processing Time 0.024 seconds

Genetic Diversity, Pathogenicity, and Fungicide Response of Fusarium oxysporum f. sp. fragariae Isolated from Strawberry Plants in Korea (국내 딸기 시들음병균 Fusarium oxysporum f. sp. fragariae의 유전적 다양성, 병원성과 살균제 반응)

  • Nam, Myeong Hyeon;Kim, Hyun Sook;Park, Myung Soo;Min, Ji Young;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.79-87
    • /
    • 2020
  • Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae (Fof) is the most important diseases of a strawberry field in Korea. We surveyed phylogenetic analysis, pathogenicity test, and fungicide response about Fof isolates isolated from Korea. Twenty-seven isolates of F. oxysporum isolated from strawberry plants were conducted in this study. Specific amplification by Fof specific primer was confirmed in all 26 isolates except Fo080701 isolate. The nuclear ribosomal intergenic spacer region and the translation elongation factor EF-lα gene sequences of isolates revealed three main lineages. Most of all isolates were contained DNA lineage group 1, but 2 and 3 group was shown only one and three isolates, respectively. All isolates were shown in pathogenicity with cv. Seolhyang. The EC50 mean values of prochloraz ranged 0.02-0.1 ㎍/ml except for Fo080701 and effectively inhibited mycelial growth at low concentrations. The EC50 value of metconazole was also 0.04-0.22 ㎍/ml, showing a similar inhibitory effect to that of prochloraz. The EC50 value of pyraclostrobin was 0.23-168.01 ㎍/ml, which was different according to the strain. In the field trial, boscalid+fludioxonil, fluxapyroxad+pyraclostrobin, and prochloraz manganese were selected as the effective fungicides for controlling Fusarium wilt.

Effect of COY (Cooking Oil and Yolk mixture) and ACF (Air-circulation Fan) on Control of Powdery Mildew and Production of Organic Lettuce (난황유와 공기순환팬의 상추 흰가루병 방제효과 및 생산에 미치는 영향)

  • Jee, Hyeong-Jin;Ryu, Kyung-Yul;Park, Jong-Ho;Choi, Du-Hoe;Ryu, Gab-Hee;Ryu, Jae-Gee;Shen, Shun-Shan
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • Powdery mildew of lettuce that is a newly reported disease became a threat to organic cultivation of lettuce in Korea since the disease caused by Podosphaera fusca resulted in a half of yield loss in heavily infected fields. To improve micro-environmental conditions around lettuce, ACF (air-circulation fan) was installed on inside roof of plastic house at 6 m intervals. The ACF increased 57% of lettuce yield and reduced 71.4% of lettuce seedling death. COY (cooking oil and yolk mixture) consisted of cooking oil 0.3% and egg yolk 0.08% reduced lettuce seedling death from 89.3% to 92.9% under the greenhouse. Seven-day interval spray of COY resulted in high control values of powdery mildew of lettuce ranging from 89.6% to 96.3%, which was comparable to a fungicide, Azoxystrobin. Lettuce yield was increased about two times compared to a non-treated conventional cultivation. Qualities of lettuce such as hardness and chlorophyll content were also improved by COY and ACF combination. Effect of COY on control of the disease was improved when $CaCO_3$ or $SiO_2$ 1,000 ppm was supplemented. Results indicated that the COY made of cooking oil such as canola emulsified with yolk was highly effective on control of powdery mildew of lettuce and suitable for organic agriculture, especially when combined with ACF.

Screening of Fungicide Resistance of Cucumber Powdery Mildew Pathogen, Sphaerotheca fusca in Gyeonggi Province (경기 지역 오이 흰가루병균(Sphaerotheca fusca)의 살균제 저항성 검정)

  • Kim, Jin-Young;Hong, Sun-Sung;Lim, Jae-Wook;Park, Kyeong-Yeol;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2008
  • Fungicide resistance of cucumber powdery mildew was screened among the pathogens isolated from diseased plants in main cucumber productuion areas in Gyeonggi Province. Each fungicide from different activity group for the control of powdery mildew were sprayed on cucumber leaves according to application concentration. Each conidia mixed with sterilized water isolated of pathogens were transferred on the cucumber leaf disks treated with each fungicide. At 7 to 9 days after inoculation of pathogen, disease severity was recorded under the microscope. Most of pathogen isolates showed moderate resistance to difenoconazole belonged to DMI group fungicide while some isolates from Osan were resistant even $300{\mu}g/ml$. Isolates from Pyeongtaek, Osan and Yongin area also showed moderate resistance to fenarimol while one isolate showed resistant to fenarimol even $300{\mu}g/ml$. Most of isolates from Pyeongtaek, Osan and Yongin showed highly resistant to azoxystrobin belonged to strobilurin group fungicide. Standard sensitive isolates the minimum inhibition concentration(MIC) value for azoxystrobin showed $200{\mu}g/ml$ while resistance isolates showed above $2000{\mu}g/ml$. Resistant isloates also showed cross resistance among strobilurin group fungicides and low control efficacy in the field test. These results suggest that treatment of strobilurin fungicides should be reduced for the control of powdery mildew.

Studies on the Control of Bud Bright of Mulberry Tree when Intermediate-Cutting Harvest in Autumn (추기 중간벌채수확 뽕나무의 아고병방제에 관할 연구)

  • 유근섭
    • Journal of Sericultural and Entomological Science
    • /
    • v.16 no.2
    • /
    • pp.99-109
    • /
    • 1974
  • These studies aimed to establishment of controlling measure of the bud blight of mulberry tree when intermediate cutting harvest in autumn. The results obtained as following. 1. Effect of chemicals a) Results of 1972 (1) Of the seventeen chemicals tested. according to in vitro, the mycelial growth of Gibberella lateritium f. sp. mori was highly inhibited by PTAB and Benlate. PTAB and Benlate were also highly effective under the conditions of pathogen inoculated to the piece of mulberry tree and fungicidal action of these chemicals were stronger than the others. (2) Topsin-M. organic fungicide and plant growth regulator were not effective to inhibition of mycelial growth. (3) The effectiveness of fungicides were reduced gradually as the time after treatment increased. PTAB and Benlate retained approximately 50 percent of the original activity even after 15 days. (t) Of the twelve chemicals tested in fold, Benlate combination of PTAB with Apion, Apion and PTAB were the most effective fungicides for the control of bud blight of mulberry tree. (5) There is a sigificant difference between the timing on spraying, but it is not greatly effective for the control of bud blight of mulberry tree. b) Results of 1975 (1) Of the ten chemicals tested, according to in vitro RH 893, combination of Benlate with TMTD and TMTD were the most effective to inhibition of mycelial growth, followed by Benlate and combination of Benlate with Topsin M. (2) Of the eleven chemicals tested, Benlate, combination of Benlate with Kinondu, combination of Benlate with Topsin-M and Topsin M were highly effective under the renditions of pathogen inoculated to the piece of mulberry tree. (3) Of the eleven chemical evaluation tests were conducted in 3 experiment fold of Seoul, Chuncheun and Pusan, Benlate, Topsin-M, Apion, TMTD. combination of Benlate with Topsin-M, combination of Benlate with TMTD, combination of Benlate with Apion were highly effective chemicals for the control of bud blight of mulberry tree. (4) There is no difference between the timing on the chemical spraying after intermediate cutting harvest mulberry tree in autumn. 2. Ecological Control. When the mulberry shoot were cut off one to two buds from the top of intermediate cutting from 15th to 30th on October, bud blight of mulberry tree was greatly reduced in next spring compared with the effective chemical spraying. 3. Economical analysis on the results of chemical and ecological tests. When the expenses of ecological control for bud blight of mulberry tree per one ha was 100. thats of chemical control was from 159 to 254 according to spraying machines.

  • PDF

Deposit Amounts of Dithianone on Citrus leaves by Different Spray Methods (살포 방법에 의한 살균제 Dithianon의 감귤 잎 부착량 비교)

  • Jeon, Hye-Won;Hong, Su-Myeong;Hyun, Jae-Wook;Hwang, Rok-Yeon;Kwon, Hye-Young;Kim, Taek-Kyum;Cho, Nam-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to obtain efficient control effect of the pesticide, it is important to ensure uniform adhesion to the desired plant parts at the right time. Pesticide spray method (application technology) is an important factor affecting the efficacy and crops persistent expression. The aim of this study was to develop an efficient system to investigate the coating weight distribution of citrus leaves due to the difference between the nozzle and spray sprinkler system using dithianon used in citrus scab. Other An, engine type sprayer was used as the control. Speed sprayer and different sprinklers were wsed to way the deposit amounts of dithianon on citrus leaves. The test was conducted at the National Institute of Horticultural Herbal Science Citrus Research Station, located in the circle citrus Jeju Island. In order to examine whether the citrus orchard spray and the evenl on the whole, dithianon (43% flowable 1000-fold dilution) was sprayed, filter paper and leaves were analyzed by the height as top, middle, bottom. Speed sprayer the was most effective on depositing at the middle position, of the leaves. All other sprays the leaces except the dry mist sprinkler were not effective enough to deposit on the back sides. To achieve more deposits on the high position leaves, an improve ment in the nozzle and an efficient power system of sprayer were needed.

Response to metalaxyl of Phytophthora capsici isolates collected in 2005 and 2006 (2005년과 2006년에 채집한 고추 역병균(Phytophthora capsici)의 Metalaxyl에 대한 약제 반응)

  • Kim, Sun-Bo;Lee, Soo-Min;Min, Gi-Young;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.305-312
    • /
    • 2007
  • It was the investigated the response to metalaxyl of Phytophthora capsici isolates collected in 2005 and 2006. With effective concentrations ($EC_{50}$) of metalaxyl causing 50% growth inhibition, resistance baseline was determined as more than $1.0\;{\mu}g\;mL^{-1}$. Based on the resistance baseline, isolation frequency (%) of P. capsici resistant to metalaxyl was 29.0% and 218% in 2005 and 2006, respectively. Among the isolates of P. capsici obtained in 2006, the isolation was variable; 33.3% in Chungnam, 26.3% in Chungbuk and 11.1% in Gyeongbuk. Two isolates of metalaxyl-sensitive (MS) and too isolates of metalaxyl-resistant (MR) P. capsici were selected and then used to investigate the activity of metalaxyl to their development stages. Even though there was a difference in mycelial growth inhibition by metalaxyl between MS and MR isolates, the fungicide was not active or nearly to sporangium germination, zoospore release, and zoospore germination of both MS and MR isolates. However, the fungicide showed weak activity against sporangium germination and zoospore release of P. capsici, not related with its resistance. Also, it was not inhibitory to zoospore germination of both resistant and sensitive isolates. In a greenhouse test, it showed 100% of control value against P. capsici 06-86 sensitive to metalaxyl, when it was applied by soil-drenching at $25\;{\mu}g\;mL^{-1}$. However, 06-130 and 16-155 resistant to metalaxyl showed less than 20% of control value.

Investigation of Fungicides Inhibitory Effect of on Summer Patch Disease, Caused by Magnaporthiopsis poae, in Kentucky bluegrass (여름잎마름병(Summer patch) 병원균에 대한 살균제의 억제효과 조사)

  • Lee, Jung Han;Shim, Gyu Yul;Kim, Jeong Ho;Jeon, Chang Wook;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.151-156
    • /
    • 2017
  • Summer patch is the most serious disease at turfgrass field or golf course established with Kentucky bluegrass during high temperature season in Korea. Nevertheless, chemicals for the summer patch control are not yet registered in Korea. We isolated the pathogens from the turfgrass showing typical summer patch symptoms and identified as Magnaporthiopsis poae by using the internal transcribed spacer ITS1 and ITS4 sequences of rDNA. The inhibition rates of the pathogen were investigated for 10 fungicides. As results, the pathogen growth was suppressed when chemicals concentration increased and negatively correlated with incubation period with the chemicals. In triazole group, all chemicals (metconazole, myclobutanil, propiconazole and tebuconazole) treated showed the inhibition rates by 100%. Thiophanate-methyl showed the next highest inhibition effect against a summer patch pathogen. In strobilurin group, pyraclostrobin was the highest suppression effect compared with azoxystrobin and trifloxystrobin. Inhibition effect of fludioxonil and fluxapyroxad on pathogen was similar to the trifloxystrobin. Based on the results, triazole and carboxamide groups are strongly recommended due to the highest inhibition effect on the summer patch pathogen, Magnaporthiopsis poae.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

Fluctuation of the sensitivity of Colletotrichum spp. causing the red-pepper anthracnose to chlorothalonil (살균제 chlorothalonil에 대한 고추 탄저병균의 감수성 변화)

  • Kim, Joon-Tae;Lee, Kyeong-Hee;Min, Ji-Young;Cho, In-Joon;Kang, Beum-Kwan;Park, Seong-Woo;Bach, Nguyen Van;Kim, Yun-Sik;Hong, Seong-Taek;Rho, Chang-Woo;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.3
    • /
    • pp.231-237
    • /
    • 2004
  • Monitoring for the sensitivity of Colletotrichum spp. causing red-pepper anthracnose to chlorothalonil was conducted by the agar dilution method, which were isolated from infected pepper fruits in 1999 and 2002. Among the isolates in 1999 or 2002, their sensitivity to fungicide was fluctuated. Investigating the inhibitory effect of $500{\mu}g/m\ell$ of chlorothalonil on the mycelial growth of Colletotrichum isolates isolated from the infected red-pepper fruits in 1999, the frequency of isolates was 23.4%, which showed 100% of inhibitory effect on mycelial growth, and 29.7% showing below 60%. Isolates in 2002, however, showed 34.6% and 14.8% of inhibitory effect on PDAs including the same concentration of fungicide, respectively, These results showed that the sensitivity of Colletotrichum isolates in 1999 was inferior to that in 2002. According to the sampling region, isolation frequency among isolates in 2002 showing less MIC rather than 1999 was increased in Kyunggi, Kangwon, Kyungbuk and Kyungnam while the frequency of resistant isolates was done in Chungnam, Chungbuk, Cheonnam and Cheonbuk Fungicide monitoring results in this report will be of use on controlling the anthracnose in each region cultivating red-pepper.

Ginseng anthracnose in Korea Factors affecting primary inoculum, growth of the pathogen, disease development and control (인삼${\cdot}$탄저병에 관한 연구 전염원, 병원균의 생태, 발병요인 및 방제)

  • Chung Hoo-Sup;Bae Hyo-Won
    • Korean journal of applied entomology
    • /
    • v.18 no.1 s.38
    • /
    • pp.35-41
    • /
    • 1979
  • Four to $17\%$ of the seeds of ginseng (Panax ginseng Meyer) collected from seemingly healthy plants carried Colletotrichum panacicola Nakata et Takimoto whereas the seeds from the plants with anthracnose sympotoms carried $42\%$ of the same fungus. Prevalent organisms isolated other than C. panacicola from seeds of both kinds of plants were Fusarium, Alternaria, Phoma, Trichoderma and others, ana in that order on acidified potato sucrose agar. C. panacicola also was isolated from 18 months old herbarium specimens. The fungus in the infected tissues also survived during the Korean winter months either on the soil surface or in the soil at 10 and 30 em in depth. When conidial suspensions of C. panacicola were inoculated on detached ginseng leaves, anthracnose symptoms occurred from 25 to $35^{\circ}C$. No symptoms occurred at temperatures below $17^{\circ}C$. Direct sunlight increased significantly the number of anthracnose lesions over those obtained in leaves inoculated in darkness or in 400 lux of fluorescent light. The lesions decreased as age of the leaves increased or as the number of conidia applied decreased. Optimum temperature for mycelial growth and conidial formation of C. panacicola was $25^{\circ}C$. Optimum pH for the mycelial growth was at $pH\;2.8\~4.6$ while the most conidial formation occurred at $pH\;5.2\~5.8.$. When fungicides were applied in the field to ginseng plants with a conidial suspension of C. panacicola, the most effective control of the anthracnose disease was by spraying with difolatan, and followed by maneb, zineb, captan and phaltan; Bordeaux mixture and ferbam were significantly less effective but significantly better than the inoculated control plants.

  • PDF