In this study, the model cognition level of high school science-gifted students about the two types of acid-base models taught in secondary schools was analyzed. In order to find out the model cognition level of students, 12 items were developed based on the acid-base reaction and the dissociation reaction of acids and bases. The subjects of the study were 95 students of two science-gifted schools. As a result of the questionnaire analysis, model cognition levels were analyzed 6 levels in the context of consistency, inconsistency, and unexplainable scope of the two models. In the acid-base reaction item, the largest percentage of students cognized only understanding of the two models. In the acid-base dissociation reaction item, they understood the two models and perceived the 'Known Ignorance' that cognizes the limitations of one model. However, there was only one student who perceived the limitations of both models and all of the 'Unknown Ignorance' that the model could not explain. Through this, we argued that there is a need for educational efforts to raise the model cognition level of science-gifted students.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.315-318
/
2019
본 논문은 화학에서 사용되는 2가지 산, 염기 모델에 대한 이해를 높이고자 각 모델의 핵심 알고리즘가 반영된 단계별 교육용 콘텐츠를 개발하는데 목적이 있다. 이를 위해 먼저 Arrhenius와 Brønsted-Lowry 모델이 갖는 핵심 알고리즘을 탐색하였으며, 이러한 핵심 알고리즘을 반영된 단계별 교육용 콘텐츠를 JAVA를 이용하여 개발하였다. 개발된 교육용 콘텐츠는 총 5단계로 구성되어 있다. 1단계는 화학에서 다루어지는 입자들이 개별적으로 무작위하게 운동함으로 표현하였으며, 2단계는 화학반응이란 이러한 무작위적 운동 중 입자 간 충돌에 의해 반응이 개시됨을 보여주었다. 3단계에서는 단일입자에 대해 정반응과 역반응을 동시에 고려한 진행되는 상황을, 4단계는 여러 입자가 동시다발적으로 정반응과 역반응에 참여한 상황을 구현하였다. 마지막 5단계는 정반응과 역반응의 공존의 비율이 다른 상황을 통해 평형상수의 의미를 고찰하도록 하였다. 창발적 사고의 핵심은 여러 입자를 생각하는 확률적 사고와 이러한 여러 입자가 개별적으로 움직인다는 사고가 반영되어야 한다. 이 연구에서 개발한 교육콘텐츠를 활용한다면 학생들이 보다 창발적 사고를 하는데 도움을 줄 것으로 기대된다.
This study analyzed achievement standards in the 2015 Science Education Standards as well as activities and assessment items in the Integrated Science, Chemistry I, and Chemistry II textbooks using science core competencies and subcomponents. All five scientific core competencies, in order of scientific thinking capacity, scientific inquiry capacity, scientific communication capacity, scientific problem solving capacity, and scientific participation and lifelong learning capacity, were included in the achievement standards of Integrated Science. Scientific thinking capacity, scientific inquiry capacity, and scientific communication capacity were included in the achievement standards of Chemistry I. The achievement standards of Chemistry II only included scientific thinking capacity. All five scientific core competencies were involved in activities of Integrated Science, Chemistry I, and Chemistry II textbooks and the highest propotion was scientific thinking capacity and scientific inquiry capacity. All five scientific core competencies were involved in assessment items of Integrated Science, Chemistry I, and Chemistry II textbooks and the highest proportion was scientific thinking capacity.
This study analyzed the level of chemistry teachers' cognition related to two types of acid-base models taught in secondary schools. For the purpose, a questionnaire was developed to identify teachers' cognitions based on previous studies that analyzed the 'Ignorance' of each model. The questionnaire consisted of two items, one related to acid and base reactions and one related to acid and base dissociation, which suggested inconsistencies between the two models. The subjects were 15 chemistry teachers, and as a result, teachers' cognitions were analyzed at four levels. The four levels are: if they don't know the two models, if they only understand one model, if they understand the two models, and perceived the 'Ignorance' of one model, and if they understand the two models and perceived the 'Ignorance' of the two models. The largest proportion of teachers understood the two models and perceived the 'Ignorance' of one model. However, the proportion of understanding the two models and perceiving the 'Ignorance' of the two models was very small. Through this, we argued that efforts to increase the level of chemistry teachers' cognition of the model and 'Ignorance' were necessary.
Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
Journal of the Korean Chemical Society
/
v.64
no.1
/
pp.30-37
/
2020
The purpose of this study was to identify the problems faced by students in sub-microscopic representation of acid-base reactions. Herein, we selected 30 students of 12th grade science classes, who had studied various acid-base models. In order to investigate the sub-microscopic representation ability of the students, we developed nine items related to various contexts, such as one type of solute and solvent, two types of solutes and solvent, cases with water as solvent or with nonaqueous solvents. For all items, we consistently observed lack of concept of chemical change. In context of aqueous and nonaqueous solutions, the frequency of lack of concept of chemical bonding was high if ammonia was the solute or solvent. Moreover, the frequency of lack of concept related to the degree of electrolytic dissociation was high. Therefore, chemistry teachers should understand that students' ability to sub-microscopic representation of acid-base reactions can be enhanced by analyzing the difficulties faced by the students in solving diverse acid-base problems.
The novel Schiff base hexadentate ligand, bis-(salicylaldehyde)-triethylentetramine (BSTT) and heptadentate ligand, bis-(salicylaldehyde)-tetraethylenpentamine(BSTP) were synthesized by the reaction of salicylaldehydes with triethylenetetramine and tetraethylenepentamine, having four and five nitrogen atoms, respectively. These liquid Schiff base ligands were become in form of the pale-yellow crystals in the specific pH 4.0 by adding acetic acid concentrated hydrochloric acid. The Cu(Ⅱ) complexes of the Schiff bases were synthesized by reaction of the Schiff base with Cu(Ⅱ) ion and their possible structures were proposed by several analytical data, and physical and chemical properties.
Proceedings of the Korean Society of Computer Information Conference
/
2017.07a
/
pp.384-385
/
2017
과학 모델은 복잡한 자연현상을 단순화하고 패턴화한 것이다. 따라서 과학 모델은 특정한 알고리즘을 가지며, 과학 모델에 대한 이해는 모델이 갖는 특정한 알고리즘에 대한 이해와 직접적으로 관련되어있다. 본 연구에서는 많은 학생들이 대안 개념을 가지고 있는 산-염기를 주제로 하여, 이 모델이 가지는 알고리즘을 학습하기 위한 프로그램을 설계하고, 알고리즘을 학습 하였을 때 과학 학습에 미치는 효과를 확인하였다. 고등학생 3학년을 대상으로 4차시로 수업을 진행하였으며, 수업의 사전과 사후 검사를 실시하여, 학생들의 모델에 대한 이해를 분석하였다. 수업 결과, 학생들은 모델의 정의와 화학반응 및 화학평형의 정성적인 부분에서는 이해의 향상을 보였으나, 정량적인 부분에는 효과를 보이지 못하였다. 이는 화학이 많은 수의 입자를 고려해야 하는 독특한 과목의 특성에 기인하며, 이를 보완하기 위하여 추후 컴퓨터프로그램을 교육 도구로 사용하는 수업을 통해 후속연구를 진행하고자 한다.
Park, Chul-Yong;Won, Jeong-Ae;Kim, Sungki;Choi, Hee;Paik, Seoung-Hey
Journal of the Korean Chemical Society
/
v.64
no.1
/
pp.19-29
/
2020
We analyzed the representations of acid-base models in 4 kinds of Chemistry I and 4 kinds of Chemistry II textbooks of the 2009 revised curriculum, and 9 kinds of Chemistry I textbooks and 6 kinds of chemistry II textbooks of the 2015 revised curriculum in this study. The problems of the textbook were divided into the problems of definitions and the representations of the logical thinking. As a result of the study, the lack of the concept of chemical equilibrium had a problem with the representation of reversible reactions in the definition of the Brønsted-Lowry model in the Chemistry I textbooks of 2009 revised curriculum, it also appeared to persist in Chemistry I textbooks of 2015 revised curriculum which contains the concept of chemical equilibrium. The representations of logical thinking were related to particle kinds of conservation logic, combinational logic, particle number conservation logic, and proportion logic. There were few problems related to representation of logical thinking in Chemistry I textbook in 2009 revision curriculum, but more problems of representations related to logics are presented in Chemistry I textbooks in 2015 revision curriculum. Therefore, as the curriculum is revised, the representations of chemistry textbooks related to acid and base models need to be changed in a way that can help students' understanding.
The aim of this study is to analyze and improve the experiment of the acid-base neutralization reaction described in science textbooks. The problems in the neutralization reaction of NaOH-HCl solution were following; 1) the decoloration of phenolphthalein solution, 2) the color change of the titrated solution during condensation for the confirmation of the salt crystals, 3) the difficulty for the confirmation of the salt crystals. These problems are explained by the structure change of phenolphthalein and the improved experiment is proposed.
In this study, we analyzed the explanations and examples of Brønsted-Lowry model in Chemistry I and Chemistry II textbooks of the 2009 revised curriculum. In particular, the definition of the Brønsted-Lowry model, the examples, and the content of experiments were analyzed by the process perspective of chemical equilibrium, emergent process. The analyzed textbooks were 4 kinds of Chemistry I textbooks and 4 kinds of Chemistry II textbooks in 2009 revision curriculum. As a result, Chemical I textbooks did not adequately show the chemical equilibrium viewpoint when explaining the Brønsted-Lowry model. In the Chemistry II textbooks, the examples of Brønsted-Lowry model were not present emergent process viewpoint, and those were described as sequential viewpoint of Arrhenius model. In addition, examples of experiments to demonstrate the Brønsted-Lowry model of Chemistry II textbooks were insufficient. The experimental examples related to the definition of acid bases were at the level of classification by the color change of indicators. The experimental examples for explaining the strength of acid and base were to compare current intensity or amount of hydrogen gas generated from the reaction with metal. In addition, all textbooks presented the state of aqueous solution when describing the Brønsted-Lowry model, causing problems with differentiation from the Arrhenius model. Therefore, it is necessary to develop examples of experiments to help students understand Brønsted-Lowry model by presenting acid and base reaction in the non-aqueous solution state.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.