• Title/Summary/Keyword: 산환환원

Search Result 4, Processing Time 0.019 seconds

Study On the Characteristics of Milled $UO_2$ Powder Prepared by Oxidation and Reduction Process (산화ㆍ환원처리된 $UO_2$ 분말의 분쇄특성 연구)

  • Lee Jae-Won;Lee Jung-Won
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.3-10
    • /
    • 2002
  • The characteristics of dry and wet milled powder prepared by 1 cycle OREOX (oxidation and reduction of oxide fuels) treatment were investigated using the simulated spent fuel pellet. Sintered pellets simulating spent nuclear fuel burned in reactor were fabricated from $UO_2$ powder using as a starting material in fabrication of nuclear fuel. The 1 cycle OREOX-treated powder was prepared by only one path of oxidation md reduction of the simulated pellet. Powder having average particle size of less than 1 $\mu\textrm{m}$ could be easily obtained by dry milling, but not be achieved by wet milling. And, specific surface area of dry milled pow-der was higher than that of wet milled powder. Dry milled powder formed loose agglomerate, while wet milled powder showed the shape of irregular and angular particles. Dry milled powder provided higher green density, resulting in higher sintered density of higher than 95% TD and average grain size of larger than 8 $\mu\textrm{m}$ satisfying the standard specification of sintered pellets.

Effects of Floating and Submerged Plants on Important Water Environments of Wetland (부유식물과 침수식물이 습지의 주요 수 환경에 미치는 영향)

  • Lee, Geun-Joo;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.289-300
    • /
    • 2013
  • In this study, two types of wetland plants, Eichhornia crassipes (a floating plant) and Ceratophyllum demersum (a submerged plant) were introduced to wetland mesocosms to understand how the water properties of wetlands such as pH, dissolved oxygen content, water temperature, oxidation reduction potential, and nutrient concentrations are affected by different types of wetland plant. The floating plant lives on the water surface and can block light penetration; it exhibited the lowest water temperature and temperature difference between lower and upper layers. After the addition of contaminants, the dissolved oxygen (DO) concentration decreased abruptly but recovered continuously in all mesocosms; especially the submerged plants, which photosynthesize in water, showed the largest increases in DO and diel periodicity DO, as well as in pH value. The oxidation-reduction potential in both water and sediment were affected by the presence of wetland plants and plant type and the results suggest that various aspects of wetland biogeochemistry are affected by the presence and type of wetland plants. The total nitrogen and phosphorous concentrations in water decreased in the following order: Water only < Water + Soil < Floating Plants < Submerged Plants. Although both floating and submerged plants can control algal concentrations, the effect was more prominent for floating plants.

NOx Formation by Oxidation of $NH_3$ in a Fixed Bed Reactor (고정층 반응기에서 $NH_3$의 산환반응에 의한 NOx 생성)

  • 이시훈;정상문;김상돈;이종민;김재성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.53-56
    • /
    • 1999
  • 석탄 연소로 내에서는 어떠한 방식으로든 NH- 라디칼이 존재하게 된다. 즉, 배가스 처리 공정에서는 SNCR 방식에 의해 질소산화물 (NO) 저감할 경우 환원제로써 사용되는 암모니아 또는 요소와 같은 물질은 고온의 연소로에서 NH- 라디칼을 생성하게 되기도 하며, 순환유동층 연소로처럼 석탄을 원료로 사용하는 연소로에서는 석탄내에 포함되어 있는 N, H와 같은 원소들이 휘발하여 NH- 라디칼이 생성되기도 한다.(중략)

  • PDF

Modification of Anode Surface with Hydrogel and Multiwall Carbon Nanotube for High Performance of Microbial Fuel Cells (미생물연료전지의 성능향상을 위한 하이드로젤 및 다중벽 탄소나노튜브를 이용한 산화전극의 표면개질)

  • Song, Young-Chae;Kim, Dae-Sup;Woo, Jung-Hui;Yoo, Kyuseon;Chung, Jae-Woo;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.757-764
    • /
    • 2012
  • The surface of graphite fiber fabric anode was modified with a hydrogel and a mixture of hydrogel and multiwall carbon nanotube, and their effectiveness were compared to the unmodified anodes in a batch microbial fuel cell (microbial fuel cells). The maximum power density of the MFC was determined by both performance of the anode and cathode. The maximum power density for the MFC with the anode modified with the mixture of hydrogel and multiwall carbon nanotube was $1,162mW/m^2$ which was 27.7% higher than that with the unmodified graphite fiber fabric anode. "The mixture of hydrogel and multiwall carbon nanotube is a good surface modifier for anode with high biological affinity and low activation losses."