• 제목/요약/키워드: 산화-환원 반응

검색결과 786건 처리시간 0.042초

생물전기화학적 기술을 이용한 물질 전환

  • 김병홍
    • 미생물과산업
    • /
    • 제17권2호
    • /
    • pp.18-21
    • /
    • 1991
  • 생물은 자기 복제를 통한 생장이나 생명유지를 위해 에너지를 필요로 한다. 화학영양생물은 화학에너지를 발효 혹은 호흡을 통해 생물학적 에너지로 전환시키며, 광영양생물은 광합성 작용을 통해 광에너지를 이용한다. 발효, 호흡, 광합성은 모두 산화-환원 반응을 통해 이루어진다. 생물의 모든 에너지 전환반응은 산화-환원 반응, 즉 전자의 흐름으로 이루어지며 생명현상이 에너지를 필요로 하기 때문에 생명현상은 전자의 흐름으로 이루어진다고 할 수 있다. 모든 생물이 에너지 전환 반응에 산화-환원 반응을 이용한다는 말은 생물이 많은 종류의 산화-환원 효소를 보유하고 있다는 뜻이며, 실제 많은 종류의 산화-환원 효소가 발견되고 연구되었다.

  • PDF

LiCl 용융염 전해환원 공정 희토류원소 산화물의 화학적 거동

  • 박병흥;최인규;정명수;허진목
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.346-346
    • /
    • 2009
  • 산화물 형태 사용후핵연료의 효율적 처분 혹은 재활용을 위한 연구 가운데, 고온의 LiCl 용융염 중에서 전해환원하여 금속으로 환원시킨 후, 환원된 금속을 고온의 LiCl-KCl 용융염에서 전해정련하는 연구가 국내외적으로 활발하게 진행되고 있다. 전해환원을 위해 일정 농도 $Li_2O$가 LiCl 용융염에 첨가되며 $Li_2O$ 농도가 높으면 반응 재질의 부식성이 크게 증가하므로 일반적으로 우라늄 산화물은 1wt% 이하의 $Li_2O$ 농도에서 전해환원 된다. 우라늄 산화물의 전해환원 전위는 $Li_2O$의 전해환원 전위 보다 표준 상태를 기준으로 공정온도인 650 $^{\circ}C$ 에서 약 70 mV 정도 낮기 때문에 전해환원 과정에서 $Li_2O$ 의 환원으로 Li 금속이 생성될 가능성이 있으며 우라늄 산화물은 대부분 직접 전해환원 되지만 일부 Li에 의해 화학적으로 환원되기도 한다. 전해환원 공정에서 환원되지 않은 희토류 산화물은 전해정련 공정에서 $UCl_3$와 반응하여 $UO_2$를 생성시켜 공정 효율을 떨어뜨린다. 따라서 전해환원 공정에서 가능하연 최대한 희토류 산화물을 금속으로 환원시키는 조건을 찾아내는 것이 바람직하고 이를 위해서 우선 전해환원 공정에서 희토류 산화물의 화학적 거동의 이해가 요구된다. 본 연구에서 열역학적 검토를 통하여 희토류 산화물의 환원 조건을 조사한 결과 희토류 산화물은 매운 낮은 $Li_2O$ 농도에서 Li에 의해 환원되고, 1wt% 이하의 $Li_2O$ 농도에서는 Sc와 Lu의 산화물이 $Li_2O$와 복합산화물을 형성하고 이들 복합산화물은 Li에 의해 환원되지 않는 것으로 나타났다. 또한 희토류 원소 별로 희토류 원소 산화물의 Li에 의한 환원 조건으로서 평형상태에서의 $Li_2O$ 농도 즉 환원 임계 $Li_2O$ 농도를 실험적으로 측정하였으며 1wt% $Li_2O$ 농도 이하에서 열역학적 해석과 동일하게 Sc와 Lu만이 복합산화물을 형성하여 Li에 의해 직접환원 되지 않는 것으로 관찰되었다.

  • PDF

Frost도를 이용한 수용액의 산화-환원반응 평형 해석 (Analysis of Oxidation-reduction Equilibria in Aqueous Solution Through Frost Diagram)

  • 이만승
    • 자원리싸이클링
    • /
    • 제26권4호
    • /
    • pp.3-8
    • /
    • 2017
  • 산화-환원반응은 수용액에서 일어나는 여러 중요한 반응중 하나이다. 산화-환원반응의 평형을 해석하는 것은 습식제련에서 침출, 분리 및 전기화화반응과 같은 단위공정을 설계하는데 있어 큰 도움이 된다. Frost도를 작성하는 방법을 설명하고, Frost도와 Latimer 표로부터 불균등화반응과 균등화반응이 일어나는 조건을 해석하였다. 또한 Frost도로부터 얻을 수 있는 정보에 대해 고찰하였다.

수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원 (Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS)

  • 함성원
    • 청정기술
    • /
    • 제20권3호
    • /
    • pp.269-276
    • /
    • 2014
  • 본 연구는 수은연속측정시스템의 가장 중요한 구성 요소의 하나인 산화수은을 원소수은으로 환원시킬 수 있는 건식 환원촉매시스템 개발을 목적으로 수행되었다. 산화-환원 표준전위를 기준으로 산화수은의 원소수은으로의 환원반응을 자발적으로 일으킬 수 있는 촉매 대상물질로 Fe, Cu, Ni 및 Co 4종류의 전이금속이 선택되었다. 이들 전이금속 촉매들은 산소가 없는 반응가스 조성에서 산화수은의 원소수은으로의 환원반응에 대해 높은 활성을 보였다. 그러나 산소가 존재하는 경우 환원 활성이 크게 감소하는데 이는 산소에 의해 해당 전이금속이 산화수은 환원 활성이 낮은 전이금속산화물로 변환되기 때문이다. 반응가스에 산소가 존재하여도 수소를 공급하면 산화수은 환원 활성이 크게 증가되는데 이는 산화수은의 환원반응이 진행되는 고온에서 산소와 수소 사이의 연소반응에 의해 산소가 소모되기 때문으로 확인되었다. Fe를 환원촉매로 하고 배기가스에 수소를 공급하는 산화수은 환원촉매시스템은 $SnCl_2$ 수용액을 사용하는 습식화학 환원기술에 필적할 수준의 활성을 나타내기 때문에 상업적으로 적용 가능한 산화수은 환원시스템으로 기대된다.

Saccharomyces cerevisiae에서 산화환원에 의한 In Vitro 단백질합성의 Thioredoxin에 중재된 조절 (Thioredoxin-Mediated Regulation of Protein Synthesis by Redox in Saccharomyces cerevisiae)

  • 최상기
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.36-40
    • /
    • 2007
  • Redox signaling은 단백질을 산화환원 시키는 세포의 중요 신호가 전달되어, 그 단백질의 기능이 변화함으로써 세포의 성장 및 사멸을 조절하게 되는 과정이다. 단백질 합성 구성원의 산화, 환원 과정에 의한 단백질 합성 조절을 알아보기 위해 환원제인 DTT 존재 하에 단백질 합성 활성을 관찰한 결과 DTT가 존재하지 않는 것에 비해 단백질합성이 1.4배 정도 증가됨이 관찰되어 redox potential을 보이는 것으로 보아 환원제가 단백질 합성을 좀 더 증진시키는 것으로 사료된다. DTT에 의한 이러한 현상은 산화환원 조절 단백질인 thioredoxin를 첨가한다면 thiol기에 환원력이 전달되어 단백질합성이 더욱 촉진되기 때문에 효모에서 thioredoxin유전자를 cloning하고 이로부터 효모에서 GST-thioredoxin을 분리하였다. DTT 존재 하에 산화환원 조절 단백질인 thioredoxin을 농도별로 첨가하였을 때의 단백질 합성이 어떻게 조절되는지 알아보았다. 반응 액에 DTT를 넣은 것과 넣지 않은 것을 사용하여 thioredoxin을 0ng, 18ng, 90ng, 460ng, 2,300 ng의 농도로 각각 넣어서 반응시켜 보았다. 이렇게 반응시킨 반응물에서 만들어진 단백질 활성을 측정하였는데 thioredoxin의 농도가 높아질수록 그 활성이 높게 나타났으며, thioredoxin을 넣은 것이 넣지 않은 것에 비해 활성이 약 4배 이상 높게 나왔다 이 결과는 산화환원 조절 단백질인 thioredoxin이 환원력을 단백질합성구성원에 효율적으로 전달하는데 관여함을 보여주는 것이며, 산화환원이 단백질 합성 시 중요한 신호전달 과정임을 암시한다.

TPR/TPO 실험기법을 이용한 전이금속산화물의 산화-환원 특성 연구 (Redox Property of Transition Metal Oxides in Catalytic Oxidation)

  • 김영호;이호인
    • 공업화학
    • /
    • 제10권8호
    • /
    • pp.1161-1168
    • /
    • 1999
  • 3주기 전이금속(Cr~Zn)의 산화물 및 V, Mo, W의 산화물에 대하여 temperature-programmed reduction/trmperature-programmed oxidation(TPR/TPO) 실험을 통하여 그 산화-환원 특성을 조사하였다. TPO 곡선의 산화피크는 TPR 곡선의 환원피크와 비슷하거나 약간 낮은 온도에서 나타났으며, 환원피크에 비하여 온도 폭이 넓었다. 3주기 전이금속한화물의 산화 및 환원 과정의 활성화에너지는 33~149 kJ/mol 범위에 있는 반면, V, Mo, W 산화물에서는 더 컸다. 금속산화물의 산화 및 환원 과정의 활성화에너지 변화는 금속-산소 결합세기에 비례하였다. 환원(TPR) 및 산화(TPO) 과정에 대한 활성화에너지 차이(${\Delta}E_a$)가 작을수록 o-자일렌 산화반응에서 금속산화물 촉매의 활성화에너지도 작았다. 금속한화물 촉매에서 o-자일렌 산화반응은 금속산화물 표면의 산화-환원 과정을 반복하는 Mars-van Krevelen 반응 메카니즘으로 설명될 수 있음을 확인하였다.

  • PDF

환원성 분위기에서의 규산철의 합성에 미치는 산화 제2철의 형태학적 효과에 관한 연구 (Morphological Effect of Hematite on the Synthesis of Fayalite in Reducing Atmosphere)

  • 임응극;권명수
    • 한국세라믹학회지
    • /
    • 제12권4호
    • /
    • pp.37-42
    • /
    • 1975
  • 철(II)이온을 안정화 하기위하여, 2산화 규소와, 구상, 입방체상 및 침상의 서로 다른형태의 산화 제2철로부터 규산철을 합성하였다. 메타놀증기로 포화시킨 질소까스를 튜브로에 도입시켜 얻은 환원성 분위기속에서, 114$0^{\circ}C$에서 11$65^{\circ}C$의 온도범위에서, 가스유속을 0.13 및 0.25l/min. 로서, 환원시간 4-150분동안 교상반응을 진행하였다. 반응생성의 동태를 오르자트 가스분석으로 검토하였으며, 생성물의 확인은 X-선 회절시험 및 감량정량에 의하였으며, 결과는 다음과 같다. 1 : 1.1의 몰비로 혼합한 산화제2철과 2산화 규소의 경우, 가스유속이 0.13l/min일 때, 규산철 합성반응시간은 구상, 입방체상 및 침상산화철에 있어서 각기 8-27분, 10-16분 및 6-7분으로 구상의 경우가 범위가 가장 넓었다. 또한, 반응속도는 산화제2철의 표면적의 평방근에 비례하였고 반응시간의 평방근에 역비례하였다.

  • PDF

철 환원 박테리아에 의한 산화철의 환원과 환원된 철을 이용한 TCE 제거에 관한 연구 (Microbial Reduction of Iron Oxides and Removal of TCE using the Iron Reduced by Iron Reducing Bacteria)

  • 신화영;박재우
    • 대한환경공학회지
    • /
    • 제27권2호
    • /
    • pp.123-129
    • /
    • 2005
  • 철을 이용한 반응벽체 (permeable reactive barrier, PRBs) 기술은 유기 화합물로 오염된 지하수를 환원적 반응에 의해 정화시키는 공법이다. 벽체의 매질로 주로 사용되는 영가 철은 반응이 진행됨에 따라 점차 2가 및 3가 철로 산화되어 제거능이 점차 저감된다. 자연계에 존재하거나 동정된 철 환원 박테리아는 산화된 Fe(III)를 Fe(II)로 환원시키는 능력을 가지고 있으며 이와 같이 환원된 Fe(II)는 반응 표면적을 넓히고 다시 할로겐 유기 화합물을 환원적으로 제거할 수 있도록 한다. 본 연구는 철 환원 박테리아로 순수균인 Shewanella algae BrY에 의한 산화철의 환원 경향을 aqueous phase와 solid phase로 나누어 관찰하고 환원된 철이 TCE 제거에 미치는 영향을 iron(II,III) oxide와 iron(III) oxide를 대상으로 하여 파악하는 것을 목표로 하였다. 박테리아는 배지 내에 존재하는 Fe(III)를 우선적으로 사용하여 Fe(II)로 환원시켰으며 선택성은 떨어지지만 입자상의 산화철 표면에 존재하는 Fe(III)도 환원시켰다. 또한 동량의 산화철이 존재할 때 iron(II,III) oxide에 비해 박테리아가 전자수용체로 사용할 수 있는 Fe(III)가 풍부한 iron(III) oxide의 환원이 더 잘 일어남을 알 수 있었고, 환원된 Fe(II)는 박테리아 또는 다른 철 산화물과 침전을 형성하였으며 TCE와의 반응속도 및 제거 능력을 향상시키는 것으로 판단된다.

일반고와 과학고 학생들의 정신용량과 산화 환원 개념의 이해도가 산화 환원 반응식 완결에 미치는 영향 (The Influence of Mental Capacity and Understanding of the Oxidation Reduction Concepts on Senior and Science High School Students' Completion of the Balancing Redox Equations)

  • 최병순;김충호;이상권
    • 대한화학회지
    • /
    • 제46권4호
    • /
    • pp.345-353
    • /
    • 2002
  • 이 연구의 목적은 일반고와 과학고 학생들의 정신용량과 산화 환원 개녀 이해 정도가 산화 환원 반응식 완결 문제의 성취도에 미치는 영향을 분석하여 이러한 화학문제 해결에 대한 효과적인 학습 지도 방안 마련에 도움을 주고자 하는데 있다. 이를 위해 일반고 학생92명과 과학고 학생 57명을 연구대상으로 선정하여 정신용량검사, 산화 환원 개념 검사, 산화 환원 반응식 완결 검사를 실시하고 성취도를 미치는 영향을 분석하였다. 일반고 학생들은 정신용량이 클수록 산화 환원반응식 완결에서의 성취도가 증가하는 경향을 보였으나 과학고 학생들은 정신용량에 따른 성취도 차이가 없었다. 산화 환원개념 이해 정도를 분석한 결과, 일반고 학생들은 개념 이해 정독 전반적으로 매우 낮았으나 과학고 학생들은 비교적 높았다. 일반고 학생들은 개념을 부분적으로 이해한 학생들의 성취도는 개념을 이해하지 못한 학생들의 성취도보다 높게 나타났고 개념을 이해하지 못한 학생들은 정신용량이 클수록 성취도가 증가하였다. 과학고 학생들은 개념 이해 정도가 높을수록 성취도가 높게 나타났다. 산화 환원 개념을 완전하게 이해한 학생은 일반고와 과학고에 관계없이 그리고 문항 유형에 관계없이 높게 성취도를 나타냈음을 알 수 있었다

산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響) (Carbothermic Reduction of Zinc Oxide with Iron Oxide)

  • 김병수;박진태;김동식;유재민;이재천
    • 자원리싸이클링
    • /
    • 제15권4호
    • /
    • pp.44-51
    • /
    • 2006
  • 대부분 전기로 분진 처리공정은 전기로 분진으로부터 아연을 회수하기 위하여 전기로 분진에 함유된 산화아연의 환원제로 탄소를 사용한다. 본 연구에서는 산화아연의 탄소열환원반응에 관한 전기로 분진의 주성분 중의 하나인 산화철의 영향에 대하여 속도론적으로 조사되었다. 실험은 반응온도 1173 K-1373 K 범위에서 중량감량법을 이용하여 수행되었다. 실험결과, 적절한 량의 산화철 첨가는 산화아연의 탄소열환원반응 속도를 증진시키는 것으로 나타났다. 이것은 산화철이 산화아연의 탄소열환원반응에서 탄소의 gasification 반응을 촉진시키기 때문으로 관찰되었다. 표면화학반응이 율속인 shrinking core model 1173 - 1373 K 범위에서 고체 탄소에 의한 산화아연의 환원반응 속도 데이터를 분석하는데 유용한 것으로 분석되었다. ZnO-C 반응계에서 활성화 에너지는 224kJ/mol (53 kcal/nol)로, $ZnO-Fe_{2}O_{3}-C$ 반응계에서 활성화 에너지는 175kJ/mol(42kca1/mol)로 그리고 ZnO-밀스케일-C 반응계에서 활성화 에너지는 184 kJ/mol (44 kcal/mol)로 각각 계산되었다.