• Title/Summary/Keyword: 산화제 과잉 연소

Search Result 35, Processing Time 0.018 seconds

Numerical Study of the Cooling Channel of the Preburner for a Small Liquid Rocket Engine (소형 액체로켓엔진용 예연소기 냉각채널 유동해석)

  • Moon, In-Sang;Shin, Kang-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.21-24
    • /
    • 2010
  • The cooling channel of the preburner for staged combustion engines was studied. The combustion pressure of the researched preburner is about 210 bar which is very high compared with the engines of the Korean Launch Vechicle and 30 ton class liquid rocket engines developed as a pre-research program. Also, the combustion is an oxygen rich process unlike the gas generators of open cycle kerosene engines. Thus the cooling process is very important to make the preburner stable. Many configurations for the preburner were developed and numerically analyzed. As a result, the pressure loss could be reached below the target.

  • PDF

Spray Characteristics of Gas-centered Swirl Coaxial(GCSC) Injector in High Pressure Condition (고압환경에서의 기체-액체 분사기 분무 특성 연구)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Bae, Tae-Won;Choi, Hwan-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.5-8
    • /
    • 2010
  • The GCSC injectors studied in this paper are those applied to the combustion chamber of staged combustion engines. Liquid fuel is injected through tangential holes along the outer wall of the GCSC injector forming a swirling sheet and oxygen rich gas generated by a preburner enters axially through the center orifice of the injector to form a gaseous jet. The spray characteristics of GCSC injectors under ambient/high pressure conditions and the effect of recess on spray characteristics have been examined in this paper. These results are expected to be used as fundamental data to develop of a staged combustion engine.

  • PDF

A Study on the Temperature Distribution at the Exit of Oxygen Rich Preburners (산화제 과잉 예연소기 후단 온도분포 연구)

  • Moon, Insang;Ha, Seug-Up;Lee, SunMee;Lee, Soo Yong
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • A preburner is one of the key components for a staged combustion cycle engine fueled by kerosene and Lox. Since it has oxygen rich combustion inside, temperature control is very crucial. The temperature of the exhaust gas should be low enough not to burn turbine blade and yet high to keep the efficiency high. In addition temporal and spatial deviations also managed strictly. Conventionally, the required average and maximum temperature are determined by engine system and the preburner should be developed to meet the criteria. Currently being developed preburner has 50K spatial temperature deviation requirement. It was estimated by numerical simulations and proven by tests. The numerical analysis were done with both supercritical condition and normal conditions. The tests results showed that the temperature deviations were less than expected, and the results from the test and simulations were well agreed when the supercritical conditions were considered. Above all, since the gas temperature created by the preburner is very stable with minimum deviation, the preburner developed can be used to drive a turbine and for gas-liquid combustion chambers.

Effects of CO Addition on Soot Formation in the Well Stirred Reactor (WSR에서 매연 생성에 관한 CO 첨가 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.35-40
    • /
    • 2012
  • Numerical investigation was performed to study on the soot formation characteristics in the WSR according to the CO addition. Ethylene and pure air were used as a fuel and an oxidizer, respectively, and three different equivalence ratios (2.0, 2.5, 3.0) were used in the calculation. The resulted CO mole fraction of 10 % CO addition showed the maximum value in spite of the least CO supply. This means that the conversion of CO to soot and other carbon compounds is weakened under incipient soot formation. The soot volume fraction was decreased with increasing the CO addition because the important species for soot formation such as pyrene and acetylene, were decreased with the addition of CO. When the equivalence ratio was 2.5, the soot volume fraction shows the highest value, which results from the contribution of fuel rich condition and reacting temperature. Furthermore, surface growth rate and species concentrations justified the HACA mechanism for soot formation.

Characteristics of Carbonaceous Particles Derived from Coal-fired Power Plant and Their Reduction (석탄 화력발전소에서 발생하는 미연분의 특성분석 및 저감방법)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Geun-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1065-1073
    • /
    • 2006
  • The unturned carbon in fly ash, recently occurred in the coal-fired Yong Hung power station, caused some problems in ash utilization and boiler efficiency. This paper describes the analysis of unburned carbon and six coals, some tests performed at Yong Hung Boiler, and the results of combustion modification for the reduction of unburned carbon in fly ash. From the physical and chemical analysis of unburned carbon in fly ash, most particles were turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD(Chemical Percolation Devolatilization) model. The results showed that the higher potential was presented to Peabody, Arthur, Shenhua coals rather than other coals. It was necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unturned carbon in ash by increasing the excess air and changing the SOFA's yaw angle.