• Title/Summary/Keyword: 산화방지

Search Result 756, Processing Time 0.039 seconds

Quality Characteristics and Inhibition Activity against Helicobacter pylori KCCM 40449 of Liquorice Yogurts Manufactured by Exopolysaccharide Producing Lactic Acid Bacteria (Exopolysaccharide 생성 유산균을 이용한 감초 추출물 첨가 Yoghurt의 품질특성 및 Helicobacter pylori KCCM 40449 억제활성)

  • Jung, Seung-Won;Kim, Cheol Woo;Lee, Su Han
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.346-354
    • /
    • 2011
  • This study was carried out to fortify the antimicrobial activity of yoghurt by adding liquorice extract to it. The liquorice extracts (1 mg/mL) showed relatively high antibacterial activity against H. pylori KCCM 40449 (p < 0.05). The solvent liquorice extracts of minimal inhibitory concentrations (MIC) against H. pylori KCCM 40449 were 25- 100 ${\mu}g$/mL. Lactobacillus amylovorus DU-21 with high EPS production ability were inoulated to milk after the addition of different amounts of liquorice extracts (0.0%, 0.05%, 0.1% and 0.2%). The physico-chemical characteristics of yoghurts added with liquorice extracts were examined. The initial pH, titratable acidity, viscosity and viable cell counts of the yoghurt added liquorice extracts were 3.41-3.51, 1.021-1.091%, 1,686-1,930 cp and 9.41-9.38 Log CFU/mL, respectively. The viscosity and syneresis of yoghurt were better than that of the control. Antimicrobial activity against H. pylori KCCM 40449 increased with increasing addition of liquorice extract. However, the sensory score of yoghurt added with different amounts of liquorice extracts was lower than that of the control (p < 0.05). As a result of the sensory evaluations, the flavor, taste, texture, color and overall acceptability of the yoghurt with 0.05% liquorice extract were found to be much better than those of the other groups (p < 0.05). Overall, the optimal amount of liquorice extract added in the manufacture of yoghurt was 0.05% of the total weight. Further studies on increment of antimicrobial activity and palatability of liquorice extract added yoghurt are necessary.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

In Vitro Properties and Biodistribution of Tc-99m and Re-188 Labeled Monoclonal Antibody CEA79.4 (Re-188과 Tc-99m 표지 단일클론항체 CEA79.4의 생체외 특성과 생체내 분포)

  • Hong, Mee-Kyoung;Jeong, Jae-Min;Yeo, Jeong-Seok;Kim, Kyung-Min;Chang, Young-Soo;Lee, Yong-Jin;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Lee, Seung-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.516-524
    • /
    • 1998
  • Purpose: Radiolabeled CEA79.4 antibody has a possibility to be used in radioimmunoscintigraphy or radioimmunotherapy of cancer. We investigated the in vitro properties and biodistribution of CEA79.4 antibody labeled with Re-188 or Tc-99m. Materials and Methods: CEA79.4 was reduced by 2-mercaptoethanol to produce-SH residue, and was labeled with Re-188 or Tc-99m. For direct labeling of Tc-99m, methylene-diphosphonate was used as transchelating agent. CEA79.4 in 50 mM Acetate Buffered Saline (ABS, pH 5.3) was labeled with Re-188, using stannous tartrate as reducing agent. In order to measure immunoreactivity and the affinity constant of radiolabeled antibody, cell binding assay and Scatchard analysis using human colon cancer cells SNU-C4, were performed. Biodistribution study of labeled CEA79.4 was carried out at 1, 14 and 24 hr in ICR mice. Results: Labeling efficiencies of Tc-99m and Re-188 labeled antibodies were $92.4{\pm}5.9%$ and $84.7{\pm}4.6%$, respectively, In vitro stability of Tc-99m-CEA79.4 in human serum was higher than Re-188-CEA79.4. Immunoreactivity and affinity constant of Tc-99m-CEA79.4 were 59.2% and $6.59{\times}10^9\;M^{-1}$, respectively, while those of Re-188-CEA79.4 were 41.6% and $4.2{\times}10^9\;M^{-1}$, respectively. After 24 hr of administrations of Re-188 and Tc-99m labeled antibody, the remaining antibodies in blood were 6.32 and 9.35% ID/g respectively. The biodistribution of each labeled antibody in other organs was similar because they did not accumulate in non-targeted organs. Conclusion: In vitro properties and biodistribution of Re-188-CEA79.4 were similar to those of Tc-99m-CEA79.4. It appears that Re-188-CEA79.4 can be used as a suitable agent for radioimmunotheraphy.

  • PDF

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.