산화물 반도체 나노선 가스센서는 기존의 벌크 및 박막재료에 비해 체적-표면적비가 매우 커서 극미량의 화학물질에 대한 감응특성이 유리하여 많은 각광을 받고 있다. 현재, 다양한 물질들의 나노선 합성 및 센서 소자 구현에 대한 연구가 국내외적으로 활발하게 진행되고 있다. 이와 같은 나노선 센서의 실용화를 위해 특정 물질에 대한 선택성과 감응특성의 증진이 여전히 요구되고 있으며, 이에 대한 여러 방향에서의 연구가 진행되고 있다. 특히, 촉매특성이 뛰어난 귀금속 나노입자를 나노선 표면에 부착시킨, 기능화된 나노선 센서소자에 관련된 연구가 활발하다. 본 연구에서는 기상법을 이용하여 합성한 산화물 나노선에 감마선을 조사하여 Au, Pt 및 Pd 금속나노입자를 형성시켰다. 이와 같이 금속나노입자가 고착된 산화물 나노선의 미세구조와 가스 감응특성을 조사하였으며, 기능화된 금속 나노입자가 가스 감응에 미치는 영향과 가스 감응 메커니즘을 제시하고자 한다.
최근, 산화물 반도체를 통한 나노선 연구가 활발히 진행되고 있다. 1차원 나노선은 넓은 표면적을 가지며 다양한 특성을 지녀 미래 nanodevice로의 중요한 building block 소자로의 활용이 가능하다. 본 연구에서는 이종의 나노선을 합성하여 hierarchical nanojunction structure를 제작, 특성을 확인하였다. 이러한 구조는 나노선이 가지는 넓은 표면적의 특성과 동시에, multi-component fuctional nanodevice를 구현하는데에 적합한 구조이다. 본 연구는 텅스텐 기판 위에 고온의 열증착 방식을 이용하여 텅스텐 산화물 나노선을 제작시켜 그 위에 저온의 수열합성을 통한 산화아연 나노선을 제작한 후 향상된 field emission emitter로서의 특성을 살펴보았다. 합성된 텅스텐 산화물 나노선은 quasi-allign된 구조를 가지며, 이러한 구조 위에 ZnO를 스퍼터링하여 seed layer를 형성시키고, 암모니아수와 아연염을 이용한 수열합성법을 통하여 합성된 나노선 위에 nanobranch의 산화아연 나노선을 형성하였다. 이러한 성장특성은 SEM, TEM을 통하여 확인하였고 각각의 특성과 계면을 살펴보았다. 또한 이러한 구조를 이용하여 전계방출특성을 확인하였는데, 약 5.7 eV의 일함수를 갖는 텅스텐 산화물 나노선 위에 더 작은 값의 일함수를 갖는 산화아연 나노선을 합성하여 전계방출특성을 보았으며, 더 향상된 결과를 얻을 수 있었다. 또한 산화아연의 합성방법에 따른 전계방출 특성의 차이도 비교하였다.
최근 나노광전소자 응용에 큰 관심을 받는 물질인 산화물 나노선은 앞으로 불어 올 나노소재 시대를 여는 선두 물질이다. 이러한 산화물 나노선 가운데 가장 큰 관심을 받는 물질로는 산화아연 나노선을 들 수 있다. 삼화아연 나노선은 상온에서 큰 엑시톤 결합에너지 및 큰 밴드갭을 가지고 있으며 투명성 및 소자구동시 안정성을 지니고 있어 그 응용이 기대된다. 하지만 이러한 나노선을 이용한 광전소자 응용은 bottom-up 방식을 기초로 한 대면적 소자제작이 어렵다. 이러한 bottom-up 방식의 나노소자 제작에서 필요한 나노선 성장기술은 금속 catalyst 없이 대면적 성장, 나노선 수직어레이, 나노선의 고온성장, 기판 사이에 발생하는 자발적 계면층 제거 등으로 대표된다. 또한 나노선의 결정성 및 광특성 향상을 위해서는 고온성장이 불가피한데, 실리콘 기판과 같이 격자상수 불일치도가 큰 기판에서는 나노선 성장이 이루어지지 않고 다시 탈착되어 구조물이 성장되지 않는다. 본 연구에서는 선택적 삼원계 단결정 씨앗층을 이용하여 길이/직경 비가 매우 향상된 MgZnO 나노와이어를 interfacial layer 없이 수직으로 고온에서 성장하여 산화물 전계방출 에미터로서의 가능성을 확인하였다.
최근 산화물 반도체와 나노소자 대한 관심이 날로 높아지고 있는 가운데 산화아연(ZnO) 나노구조를 이용한 나노소자 제작이 많이 연구되고 있다. 산화아연은 c축으로 우선 배향성을 가지는 우르짜이트 구조로써, 나노선 성장이 다른 산화물에 비해 용이하고 그 물리적, 화학적 특성이 안정 무수하다. 이러한 산화아연 나노선 제작법 가운데, 유기금속화학기상증착법은 다른 성장법에 비해 결정학적 광학적 특성이 우수하고 성장속도가 빨라 고품질 나노선 성장에 용이한 장비로 각광받고 있다. 하지만 bottom-up 공정을 기반으로 한 나노소자제작에서 몇 가지 문제점을 가지고 있다. 1) 수직형 대면적 성장, 2) 나노선 밀도 조절의 어려움, 3) 기판과의 계면층에 자발적으로 생성되는 계면층의 제거, 4) 고온성장시 precursor의 증발 문제 등이 그것이다. 본인은 이러한 문제점을 해결하기 위해 산화아연 나노구조 성장 시, 마그네슘(Mg)을 도입하여, 각 원소의 함량 분포 정도에 따라 기판 표면에 30nm 두께 미만의 상분리층(단결정+비정질층)을 자발적으로 형성시켰다. 성장이 진행됨에 따라, 아연이 rich한 단결정 층에서는 나노선이 선택적으로 성장하게 하였고, 마그네슘이 rich한 비정질 층에서는 성장이 이루어지지 않게 하였다. 따라서 산화아연이 증발되는 온도영역에서 10nm 이하 직경을 가지는 나노선을 자발적으로 계면층 없이 수직 성장하였다. 또한, 표면의 단결정, 비정질의 사이즈를 Mg 함량으로 적절히 조절한 결과, 산화아연계 나노월 구조성장이 가능하였다.
염료감응 태양전지는 실리콘 태양전지에 비해 단가가 낮고 반투명하며 친환경적 특성으로 차세대 태양전지로 주목을 받았으나 염료의 안정성의 문제와 특정 파장대의 빛만 흡수하는 단점을 가지고 있다. 이러한 문제점을 해결하기 위하여 양자구속 효과에 의해 크기에 따라 밴드갭 조절이 용이하여 다양한 파장대의 빛을 흡수 할 수 있는 양자점 감응태양전지가 많은 관심을 받고 있다. 하지만 양자점 감응 태양 전지의 활성층으로 사용되는 반도체 산화물인 이산화티타늄의 두께는 $13{\sim}18{\mu}m$로 짧은 확산거리로 인해 전하수집의 한계를 가지고 있다. 이를 극복하기 위해 인듐 주석 산화물 나노선을 합성하여 전자가 광전극에 직접유입이 가능하도록 해 빠른 전하이동 및 전하수집을 가능하게 한다. 인듐 주석 산화물 나노선은 증기수송 방법(VTM)을 이용하여 인듐 주석 산화물 유리 기판 위에 $5{\sim}30{\mu}m$ 길이로 합성하였다. 전해질과 전자가 손실되는 것을 방지하기 위해 원자층 증착법(ALD)을 이용하여 이산화 티타늄 차단층을 20 nm 두께로 코팅한 후 화학증착방법(CBD)을 이용하여 인듐 주석 산화물 나노선-이산화 티타늄 코어-쉘 구조를 만든다. 마지막으로 황화카드뮴, 카드늄셀레나이드, 황화아연을 증착시킨 후 다황화물 전해질을 이용하여 양자점 감응 태양전지를 제작하였다. 특성 평가를 위해 전계방사 주사전자현미경, X-선 회절, 고분해능 투과 전자 현미경을 이용하며 intensity modulated photocurrent spectroscopy (IMPS), intensity modulated voltage spectroscopy (IMVS)를 이용하여 전하수집 특성평가를 하였다.
습식 산화 분위기에서 vapor-solid process를 통해 금속 촉매를 사용하지 않고도 낮은 온도에서 산화 인듐나노선을 성공적으로 합성하였다. 나노선은 x-선 회절(XRD), 분산 x-선 분광 분석기(EDS)를 갖춘 주사전자현미경(SEM), 투과전자현미경(TEM)을 통해 분석되었다. XRD 결과는 합성된 산화 인듐 나노선이 입방정 구조를 갖는다는 것을 보여준다. 이러한 나노선들은 두 가지 형태를 갖는다. 하나는 줄기에 약 500 nm 크기의 각진 나노입자가 형성된 형태이고 다른 하나는 나노입자가 형성되지 않은 형태이다. 나노선의 길이는 수 마이크로미터 범위이고, 두께는 약 10 nm에서 250 nm 범위이다. 나노선은 결함을 포함하지 않았으며 표면에 5 nm 이하의 비정질 층을 가지고 있었다. TEM 분석 결과 대부분의 나노선의 성장 방향은 <100> 방향이었으나 나노입자를 포함한 나노선은 <110> 방향으로 자랐다는 것이 발견되었다. 이러한 성장 방향은 이전의 문헌에서 보고되지 않은 새로운 결과이다. 일반적인 성장 방향과는 다른 새로운 방향으로 나노선이 자랄 수 있었던 것은 본 연구에서 산화물 합성 시 산소의 공급원으로 사용된 습식 분위기와 비교적 낮은 온도가 원인인 것으로 생각된다. 따라서 습식 산화 분위기에서의 나노선 합성법을 다른 여러 산화물의 나노선 합성에 응용한다면 낮은 온도에서 새로운 형태 및 성장 방향을 갖는 나노선을 얻을 수 있을 것으로 예상된다.
최근 박막형 LED 및 박막형 태양전지등의 기존 마이크로 소자들의 효율향상을 위한 개선으로 나노구조를 이용한 나노소자 제작이 관심을 받고 있다. 이는 가능성으로만 여겨져왔던 나노기술이 기존 박막형 소자에서 포화된 효율상향 접근방식의 한계에 따른 것으로 생각되며, 나아가 나노기술로 제작된 나노소자가 우리 생활을 채우게 될 날이 얼마남지 않은 것을 의미한다. 특히, 디스플레이 소자에서의 나노기술은 더욱 더 중요시 되고 있다. 그로 인해 투명성과 우수한 광전기적 특성을 지닌 산화물 반도체와 그 나노구조 대한 관심이 날로 높아지고 있으며, 그 가운데 산화아연계(ZnO, MgZnO등) 나노구조를 이용한 나노소자 제작이 많이 연구되고 있다. 산화아연은 c축으로 우선 배향성을 가지는 우르짜이트 구조로써, 나노선 성장이 다른 산화물에 비해 용이하고 그 물리적, 화학적 특성이 안정 우수하다. 이러한 산화아연 나노선 제작법 가운데, 유기금속화학기상증착법은 다른 성장법에 비해 결정학적 광학적 특성이 우수하고 성장속도가 빨라 고품질 나노선 성장에 용이한 장비로 각광받고 있다. 하지만 bottom-up 공정을 기반으로 한 나노소자제작에서 몇 가지 문제점을 가지고 있다. 1) 수직형 대면적 성장, 2) 나노선 밀도 조절의 어려움, 3) 기판과의 계면층에 자발적으로 생성되는 계면층의 제거, 4) 고온성장시 precursor의 증발 문제 등이 그것이다. 이러한 문제점을 해결하기 위해 산화아연 나노구조 성장 시, 마그네슘(Mg)을 도입하여, 각 원소의 조성 차이에 따라 기판 표면에 30nm 두께 미만의 상분리층(단결정+비정질층)을 자발적으로 형성시켰다. 성장이 진행됨에 따라, 아연이 rich한 단결정 층에서는 나노선이 선택적으로 성장하게 하였고, 마그네슘이 rich한 비정질 층에서는 성장이 이루어지지 않게 하였다. 따라서 산화아연이 증발되는 온도영역에서 10nm 이하 직경을 가지는 나노선을 자발적으로 계면층 없이 수직 성장하였다. 또한, 표면의 단결정, 비정질의 사이즈를 Mg 유량으로 적절히 조절한 결과, 산화아연계 나노월 구조성장이 가능하였다.
Au 촉매를 코팅한 사파이어 기판 상에서 산화아연과 흑연 분말을 혼합한 분말재료를 이용하여 VLS (vapor-liquid-solid) 법으로 산화아연 반도체 나노선을 합성하였다. 제조된 산화아연 나노선은 380 nm에서 근 자외선 영역의 NBE (near-band edge) 발광과 600 nm 부근의 가시광선 영역에서 넓게 퍼져 발광하는 상대적으로 강한 DL (deep level) 발광이 확인되었다($I_{NBE}/I_{DL}$ <1). 산화아연 나노선을 효율적인 단일 파장 자외선 발광체에 적용될 수 있도록 NBE 발광을 극대화함과 동시에 DL 발광을 억제시키기 위하여 본 실험에서는 합성된 산화아연 나노선에 수소 플라즈마 처리를 하였다. 플라즈마 처리시간이 길어짐에 따라(120초 이상) 발광특성의 향상정도는 점차로 감소하였지만, 수소 플라즈마 처리를 통해 나노선 내부에 존재하는 불순물 제어 등으로 다소 짧은 시간의 플라즈마 처리로(90초 이내) DL발광대비 NBE발광의 세기가 약 4배로 향상됨을 확인 하였다($I_{NBE}/I_{DL}$ ~4).
나노섬유(nanofiber), 나노선(nanowire), 그리고 나노튜브(nanotube)와 같은 1차원 구조의(one-dimensional structure) 나노재료는 벌크(bulk) 및 박막(film) 재료와는 다르게 물리적, 화학적으로 특이한 성질을 가지고 있으며, 이러한 성질은 나노재료의 구조, 형상, 크기 등에 큰 영향을 받는다. 첫 째, 전기방사(electrospinning) 공정을 이용한 나노섬유의 합성; 용액의 특성, 전기장 세기, 방사시간 등의 변수를 조절하게 되면 방출되는 재료의 형상을 입자 혹은 섬유상의 형태로 얻을 수 있으며, 전기방사를 통해 합성된 나노재료의 소결 온도 및 시간을 달리함으로써 나노입자의 크기를 조절할 수 있다. 또한, 템플레이트 합성법(template synthesis) 및 이중노즐(coaxial nozzle)을 이용해 속이 빈 형태인 중공(hollow) 구조의 나노섬유를 얻을 수 있으며, 전기방사에 사용되는 전구물질에 원하는 금속 및 산화물을 첨가함으로써 복합체(composite) 나노섬유를 얻을 수 있다. 둘 째, VLS(Vapor-Liquid-Solid) 공정을 이용한 나노선의 성장; 온도, 압력, 전구물질의 양, 그리고 시간 등의 변수를 조절하게 되면 원하는 직경 및 길이를 갖는 나노선을 성장시킬 수 있다. 그리고 ALD(Atomic Layer Deposition)를 이용해 나노선에 추가적인 층을 형성함으로써 코어-셀 구조를 형성할 수 있으며, 감마선, UV와 같은 공정을 이용해 귀금속 촉매를 나노선에 기능화 시킬 수도 있다. 코어-셀 구조를 갖는 나노선/나노섬유는 코어 혹은 셀 층의 전자나 홀의 이동을 유발하여 전자공핍층(electron depletion layer) 또는 정공축적층(hole accumulation layer)을 확대 및 축소시켜 센서의 초기저항을 증가시키거나 감소시키는 역할로써 이용되고 있으며, 특히, 셀 층의 두께가 셀 층 재료의 Debye length와 유사한 크기를 갖게 되면, 셀 층은 완전공핍층(fully depleted layer)을 형성해 최대의 감도를 나타낼 수 있다. 본 연구에서는 다양한 제조 공정을 통해 제작될 수 있는 1차원 나노-구조물을 가스센서에 적용하는 사례들을 소개하고, 이러한 가스센서의 감응성능을 향상시키기 위한 방법의 한 가지로 원자층증착법으로 나노선/나노섬유의 표면에 셀층을 형성하여 감응성 향상 메커니즘 및 관련 주요 변수들을 조사하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.