• Title/Summary/Keyword: 산화물/금속/산화물

Search Result 989, Processing Time 0.029 seconds

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities (해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구)

  • Changhan Lee;Sangsu An;Yuna Heo;Youngji Cho;Jiho Chang;Sangtae Lee;Sangwoo Oh;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.30-36
    • /
    • 2022
  • A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.

Fractionation of Heavy Metals by Early Diagenesis in Deep-sea core Sediments from the Korea Deep-sea Environmental Study (KODES) area, NE Equatorial Pacific (한국심해환경연구(KODES) 지역 표층 퇴적물 중 속성작용에 의한 금속의 분화)

  • Park, Sung-Hyun;Jung, Hoi-Soo;Park, Chan-Young;Lee, Kyeong-Yong;Kim, Ki-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.3
    • /
    • pp.215-225
    • /
    • 1999
  • To study the vertical variations of major elements, trace elements and rare earth elements(REEs) contents in deep-sea sediments, six cores from Korea Deep-sea Environmental Study area(KODES) were analyzed. Topmost sediment layers of KODES area are divided into two Units; brown-colored and peneliquid Unit I and pale brown-colored and relatively solidified Unit II. Contents of major elements, REEs, Cu, Sr and Rb in each Unit are almost same, while contents of Mn, Ni and Co in Unit I are two or three times higher than those in Unit II. R-mode factor analysis represents that surface sediments are composed of alumino-silicate phase (AI-Ti-K-Mg-Fe-Rb-Ce), apatite phase (Ca-P-Cu-Sr-Trivalent Rare Earth Elements) and Mn-oxide phase(Mn-Ni-Co). Factor scores in silicate and apatite phases in each Unit are nearly same, whereas those in Mn-oxide phase in Unit I is higher than those in Unit II. While NilCu ratio in Unit I is two times higher than that in Unit II. We interprete the geochemical fractionation of Ni and Cu as a result that Ni can be remobilized in oxygen-depleted micro-environment in Units I and II and then easily reprecipitated in Unit I, while most of Cu supplied together with organic material is decomposed mostly in Unit I and sorbed into apatite.

  • PDF

Distribution of Total Mercury in Korean Coastal Sediments (한반도 연안역 표층퇴적물 내 총 수은 분포 특성)

  • JOE, DONGJIN;CHOI, MANSIK;KIM, CHANKOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.2
    • /
    • pp.76-90
    • /
    • 2018
  • To determine the distribution of mercury (Hg) in the coastal surface sediments around the Korean peninsula, the baseline concentration of Hg was estimated, the extent of contamination was assessed, and the factors controlling the distribution were discussed. The concentrations of Hg in surface sediments were significantly high in Jinhae-Masan Bay in the South Sea, Ulsan-Onsan Bay and Yeongil Bay in the East Sea, but Hg in other sediments showed a similar distribution to Cs and relatively very low concentration between 0.21 and $39.5{\mu}g/kg$ ($13.6{\pm}7.80{\mu}g/kg$). Compared to the sediment quality guidelines in Korea, 8 % of the surface sediments (n=282) analyzed in this study exceeded the values of the threshold effects level (TEL), and six sediments collected around Onsan Port were higher than the value of the probable effects level (PEL). The contamination levels of Hg were assessed by the enrichment factors using the baseline concentration (2.06Cs+1.75) based on the residual analysis from the linear regression line for Cs, and further, factors controlling the distribution of Hg were discussed by the comparison with geochemical substances depending upon the Hg enrichment level. Hg concentrations were correlated well with Cs concentration in the range of less than 1.69 of EF implying grain size control, while in the range of 1.69 and 4.03 Hg concentrations were correlated well with Fe oxyhyroxide and organic carbon contents, which indicates Hg was enriched by superior sorption capability. On the meanwhile, samples with higher EFs (4.03 to 74.9) showed fairly positive correlations with other metals (Cu, Zn, Pb) rather than geochemical substances. For samples in Youngil Bay and Ulsan-Onsan Bay (n=30), Hg concentrations were correlated only with other metals rather than geochemical substances implying simultaneous supply of metal particles from metal refineries. But samples at Gosung, Sokcho and Uljin coast were correlated well with organic carbon even though they had high EFs. In addition, samples in Jinhae-Masan Bay with high contents of S were enriched by relatively high sulfide formation.

Removal of Alkali Metal Ion using Inorganic Ion Exchanger (무기이온교환제를 이용한 알카리 금속이온 제거)

  • Ha, Ji-Won;Yi, Kwang Bok;Lee, Si Hyun;Rhee, Young-Woo;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.423-429
    • /
    • 2008
  • Currently, Ash-free clean coal producing process by solvent extraction is under development. The produced ash-free clean coal can be directly combusted in a gas turbine which results in substantial improvement of power generation efficiency. However, the clean coal produced by the solvent extraction still contain trace amount of alkali metal which may cause corrosion on turbine blades during the direct combustion. In present work ${\alpha},{\beta}$-metal (Zr and Ti) phosphates and H-Y zeolite were synthesized and their ion exchange characterizations were investigated for the application on alkali metal removal for clean coal production. $Na^+$ ion removal capacities of the metal phosphates and H-Y zeolite were measured and compared in both aqueous solution (100 ppmw, $Na^+$) and coal dissolved N-methyl-2-pyrrolidone (NMP, 12 ppmw $Na^+$) at elevated temperature. In aqueous solution, the ${\beta}$ form metal phosphates showed very high ion exchange capacities compared to ${\alpha}$ form. ${\beta}$ form metal phosphates also showed higher $Na^+$ removal capacities than H-Y zeolite. In ion exchange medium of NMP, all the ${\alpha}$ form metal phosphates showed over 90% of $Na^+$ ion removal efficiency in the temperature range of 200 to 400 while that of H-Y zeolite decreased as a half when the temperature was over 350. In addition, the regenerated metal phosphates by acid treatment showed no sign of degradation in $Na^+$ removal efficiency. Among the metal phosphates used, $Zr_{0.75}Ti_{0.25}(HPO_4)_2$ showed the best performance in $Na^+$ removal and is expected to be the most suitable inorganic ion exchanger for the alkali metal removal process.

Anti-wrinkle Effect of Cambodian Phellinus linteus Extracts (캄보디안 상황버섯 추출물의 주름개선 효과 연구)

  • Cheon, Soon-Ju;Jang, Min-Jung;Jang, Young-Ah;Choi, Eun-Young;Jun, Dong-Ha;Kim, Young-Hun;Cho, Woo-A;Jeong, Yeon-Sook;Kwon, Hyeork-Bum;Kim, Tae-Hoon;Choi, Kyung-Im;Do, Jeong-Ryong;Lee, Chang-Eon;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1718-1721
    • /
    • 2008
  • The skin of human is constantly being exposed to environmental irritants such as ultraviolet, smoke and chemicals. These irritants cause free radicals and reactive oxygen species which leave serious damages on the cells of skin. The water and ethanol extracts of Cambodian Phellinus linteus were investigated for the activities of anti-lipid peroxidation and anti-wrinkle effects to apply as a functional ingredient for cosmetic products. As the result of evaluation of liquid oxidation rate by add $Fe^{2+}$ and $Cu^{2+}$ to Cambodian Phellinus linteus extracts, Cambodian Phellinus linteus ethanol extracts were higher than Cambodian Phellinus linteus water extracts in the chealting ability of $Fe^{2+}$ and $Cu^{2+}$. The Cambodian Phellinus linteus ethanol extracts exhibited that anti-lipid peroxidation higher than butylated hydroxytoluene (BHT) at the concentration of 0.1 mg/ml, 0.5 mg/ml and 1 mg/ml. Cambodian Phellinus linteus water and ethanol extracts showed a higher inhibitory effect on $Fe^{2+}$-induced lipid peroxidation compared to $Cu^{2+}$-induced lipid peroxidation. In the case of anti-wrinkle effect, the elastase inhibition activity of Cambodian Phellinus linteus ethanol extracts was 50.7%, and it is higher than urosolic acid at the concentration of 0.01 mg/ml. Also, in collagenase inhibition activity, Cambodian Phellinus linteus water extract showed low effect, but Cambodian Phellinus linteus ethanol extract was about 50% at a 0.1 mg/ml. concentration. These results proved that Cambodian Phellinus linteus had anti-lipid peroxidation and anti-wrinkle effect. Therefore, Cambodian Phellinus linteus could be useful as an anti-wrinkle cosmetic ingredient.

Deterioration Degree and Material Research of Metal Archival Objects (금속류 행정박물의 손상도 및 재질 연구)

  • Park, Hyung-Ho;Cho, Nam-Chul;Na, Mi-Sun
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • The archival objects are tangible evidence reflecting public work as forming archives which are administrative, historic, symbolic, cultural and artistic value. They are produced from the various countries so that they have different material and manufacture techniques. However there are difficulties in conservation and management because the material investigation and conservation management system are not established. Therefore this research presents fundamental data for the efficient conservation management by material investigation and condition check metal archival objects. Among the public official presents made of metal, 12 pieces which are discoloration, oxidation, loss or crack are chosen for this research. In order to examine extensive condition of metal archival objects, the condition check card used from the domestic museum and the national museum in Japan are collected and then the new check card is produced. X-ray is used to know the making technique, binding means between different material. Portable-XRF is also used for the chemical composition analysis of metal archival objects, and then classifying respectively according to their material. As a result of condition check, it is possible to investgate the appearance character, deteriorated parts and weak parts of structure. Also P-XRF could find out the composition of metal archival objects which is different from existing condition check card. Therefore the research results can be used as fundamental data for further conservation and management as well as long-term conservation.

c-BN 박막의 박리현상에 미치는 공정인자의 영향

  • 이성훈;변응선;이건환;이구현;이응직;이상로
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.148-148
    • /
    • 1999
  • 다이아몬드에 버금가는 높은 경도뿐만 아니라 높은 화학적 안정성 및 열전도성 등 우수한 물리화학적 특성을 가진 입방정 질화붕소(cubic Boron Nitride)는 마찰.마모, 전자, 광학 등의 여러 분야에서의 산업적 응용이 크게 기대되는 자료이다. 특히 탄화물형성원소에 대해 안정하여 철계금속의 가공을 위한 공구재료로의 응용 또한 기대되는 재료이다. 특히 탄화물형성원소에 대해 안정하여 철계금속의 가공을 위한 공구재료로의 응용 또한 크게 기대된다. 이 때문에 각종의 PVD, CVD 공정을 이용하여 c-BN 박막의 합성에 대한 연구가 광범위하게 진행되어 많은 성공사례들이 보고되고 있다. 그러나 이러한 c-BN 박막의 유용성에도 불구하고 아직 실제적인 응용이 이루어지지 못한 것은 증착직후 급격한 박리현상을 보이는 c-BN 박막의 밀착력문제때문이다. 본 연구에서는 평행자기장을 부가한 ME-ARE(Magnetically Enhanced Activated Reactive Evaporation)법을 이용하여 c-BN 박막을 합성하고, 합성된 c-BN 박막의 밀착력에 미치는 공정인자의 영향을 규명하여, 급격한 박리현상을 보이는 c-BN 박막의 밀착력 향상을 위한 최적 공정을 도출하고자 하였다. BN 박막 합성은 전자총에 의해 증발된 보론과 (질소+아르곤) 플라즈마의 활성화반응증착(activated reactive evaporation)에 의해 이루어졌다. 기존의 ARE장치와 달리 열음극(hot cathode)과 양극(anode)사이에 평행자기장을 부여하여 플라즈마를 증대시켜 반응효율을 높혔다. 합성실험용 모재로는 p-type으로 도핑된 (100) Si웨이퍼를 30$\times$40 mm크기로 절단 후, 100%로 희석된 완충불산용액에 10분간 침적하여 표면의 산화층을 제거한후 사용하였다. c-BN 박막을 얻기 위한 주요공정변수는 기판바이어스 전압, discharge 전류, Ar/N가스유량비이었다. 증착공정 인자들을 변화시켜 다양한 조건에서 c-BN 박막의 합성하여 밀착력 변화를 조사하였다. 합성된 박막의 결정성 분석을 FTIR을 이용하였으며, Bn 박막의 상 및 미세구조관찰을 위해 투과전자현미경(TEM;Philips EM400T) 분석을 병행하였고, 박막의 기계적 물성 평가를 위해 미소경도를 측정하였다. 증착된 c-BN 박막은 3~10 GPa의 큰 잔류응력으로 인해 증착직후 급격한 박리현상을 보였다. 이의 개선을 위해 증착중 기판바이어스 제어 및 후열처리를 통해 밀착력을 수~수백배 향상시킬 수 있었다. c-BN 박막의 합성을 위해서는 증착중인 박막표면으로 큰 에너지를 갖는 이온의 충돌이 필요하기 때문에 기판 바이어스가 요구되는데, c-BN의 합성단계를 핵생성 단계와 성장 단계로 구분하여 인가한 기판바이어스를 달리하였다. 이 결과 그림 1에서 나타낸 것처럼 c-BN 박막의 핵생성에 필요한 기판바이어스의 50% 정도만을 인가하였을 때 잔류응력은 크게 경감되었으며, 밀착력이 크게 향상되었다.

  • PDF

Effect of Wear Environments on the High Stress Sliding Wear Behavior of Ni-base Deloro 50 Alloy (Ni계 Deloro 50합금의 고하중 Sliding 마모거동에 미치는 마모환경의 영향)

  • Choi, Jin-Ho;Choi, Se-Jong;Kim, Jun-Gi;Kim, Yong-Deog;Kim, Hak-Soo;Mun, Ju-Hyun;Baek, Ha-Chung;Lee, Duck-Hyun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1115-1120
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Significance of Dissimilatory Fe(III) Reduction in Organic Matter Oxidation and Bioremediation of Environmental Contaminants in Anoxic Marine Environments (혐기성 해양환경에서 철 환원세균에 의한 유기물 분해 및 생물정화)

  • Hyun Junc-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • I reviewed an ecological and environmental significance of microbial carbon respiration coupled to dis-similatory reduction of fe(III) to Fe(II) which is one of the major processes controlling mineralization of organic matter and behavior of metals and nutrients in various anaerobic environments. Relative significance of Fe(III) reduction in the mineralization of organic matter in diverse marine environments appeared to be extremely variable, ranging from negligible up to $100\%$. Cenerally, Fe(III) reduction dominated anaerobic car-bon mineralization when concentrations of reactive Fe(III) were higher, indicating that availability of reactive Fe(III) was a major factor determining the relative significance of Fe(III) reduction in anaerobic carbon mineralization. In anaerobic coastal sediments where $O_2$ supply is limited, tidal flushing, bioturbation and vegetation were most likely responsible for regulating the availability of Fe(III) for Fe(III) reducing bacteria (FeRB). Capabilities of FeRB in mineralization of organic matter and conversion of metals implied that FeRB may function as a useful eco-technological tool for the bioremediation of anoxic coastal environments contaminated by toxic organic and metal pollutants.