Proceedings of the Korea Multimedia Society Conference
/
2001.06a
/
pp.75-78
/
2001
본 논문은 통계청에서 실시하는 인구주택 총조사로부터 획득된 각 개인의 직업 및 직종을 기술하고 있는 자연어를 입력받아 입력된 자연어가 의미하는 한국 표준 산업/구업 분류 코드의 후보들을 생성하는 산업/직업 코드 분류 도구를 제안한다. 코드 분류는 분류할 코드를 문서 범주로 간주하면 문서 분류와 동일한 문제로 생각할 수 있다. 하지만 본 산업/직업 코드 분류 문제는 입력되는 자연어의 길이가 한 두 문장 정도로 매우 짧아 문서 분류에 사용될 자질들이 개수가 주어 기존의 문서 분류 기법을 적용하기 어렵다. 이에 본 논문은 표준 코드를 기술하고 있는 내용을 미리 색인하고 입력된 자연어로부터 질의어를 생성하여 벡터공간모델로 질의어를 검색후 질의어와 일치율이 가장 높은 코드들을 분류될 후보 코드로 계시하는 정보검색 기법을 이용한 산업/직업 코드 분류 도구를 개발하였다.
The Journal of Korean Association of Computer Education
/
v.7
no.4
/
pp.51-60
/
2004
This paper proposes an automated coding system of Korean standard industry/occupation for census which reduces a lot of cost and labor for manual coding. The proposed system converts natural language responses on survey questionnaires into corresponding numeric codes using information retrieval techniques and document classification algorithm. The system was experimented with 46,762 industry records and occupation 36,286 records using 10-fold cross -validation evaluation method. As experimental results, the system show 87.08% and 66.08% production rates when classifying industry records into level 2 and level 5 codes respectively. The system shows slightly lower performances on occupation code classification. We expect that the system is enough to be used as a semi-automate coding system which can minimize manual coding task or as a verification tool for manual coding results though it has much room to be improved as an automated coding system.
Journal of the Korea Academia-Industrial cooperation Society
/
v.7
no.4
/
pp.594-601
/
2006
Coding of occupational and industrial codes is a major operation in census survey of Korean statistics bureau. The coding process has been done manually. Such manual work is very labor and cost intensive and it usually causes inconsistent results. This paper proposes an automatic coding system based on example-based learning. The system converts natural language input into corresponding numeric codes using code generation system trained by example-based teaming after applying manually built rules. As experimental results performed with training data consisted of 400,000 records and 260 manual rules, the proposed system showed about 76.69% and 99.68% accuracy for occupational code classification and industrial code classification, respectively.
본 논문은 수동 코드 분류 규칙과 예제기반의 자동 학습을 이용하는 한국어 표준 산업/직업 코드 자동분류 시스템을 제안한다. 제안된 시스템은 산업과 직업에 대하여 설명하는 자연어를 입력받아 해당 산업/직업 분류 코드를 생성하는 시스템으로 수작업으로 구축된 규칙을 적용한 후 규칙이 적용되지 않는 레코드는 예제 기반의 학습을 이용한 자동 분류 시스템에 의해서 해당 코드를 할당한다.
Proceedings of the Korea Information Processing Society Conference
/
2002.11b
/
pp.1095-1098
/
2002
국내외 카 백신업체별로 악성 코드의 분류 체계가 마련되어 있지만 각각의 백신업체별로 분류 체계가 차이가 있고 또한 도스 운영체제 때부터 사용한 분류 체계를 그대로 사용하여 현재의 악성 코드 분류와는 많은 차이를 보이고 있다. 이러한 백신업체들의 악성 코드 분류를 정착하게 분류하는 방법으로 본 논문에서 새로운 악성 코드 분류지침과 분류지침에 의한 명명법을 제안한다. 본 논문에서 제안한 분류지침을 토대로 안티-바이러스 산업 및 악성 코드 연구를 활성화시키는 정책 수립의 기초 자료를 사용한 수 있으며, 악성 코드 정보의 체계화 통합화 표준화 등에 기여할 수 있다.
현재 각 도시철도 운영기관이 사용하고 있는 부품코드체계는 구 정부물품 분류체계 11자리를 수요한 코드체계로의 군, 급의 2단계 분류로 구성되어 있어, 분류단계의 제약이 존재할 뿐만 아니라 분류체계의 구조적 문제로 군, 급, 품명의 빈번한 통합, 삭제에 따른 코드 관리의 어려움이 존재하고 있다. 또한, 사용자가 원하는 물품을 해당 분류체계로 찾아가기 위한 그룹별 탐색과 통계적 분석이 불가능한 실정이다. 이러한 분류체계의 문제점과 향후 차종의 노후화로 발생될 관리품목의 증가로 업무능률 저하가 예상되기 때문에 새로운 체계의 표준화된 부품코드체계가 절실히 필요한 실정이다. 본 논문은 산업 발전에 따르는 확장성과 세분화에 대한 분류구조의 탄력성을 가지고 객관적으로 분류 추가 및 변경이 가능하도록 하고, 정부 및 국제기관 표준권고안과 호환성을 가질 수 있는 표준 부품코드체계를 제정하기 위한 연구결과이다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.394-398
/
2020
산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.516-518
/
2020
통계청에서는 지역별고용조사, 인구총조사 등 다양한 조사를 실시하고 있다. 이러한 조사에서는 응답자의 사업체명, 사업체가 주로 하는 일, 응딥자가 한 일, 부서 및 직책 정보 등을 조사해서 조사되어진 자료를 토대로 한국 표준 산업분류 형태로 코드를 부여해 주고 있다. 각 조사에서는 자연어 형태로 입력을 받아서 자료처리 기간에 코딩작업을 하는 조사가 있고 조사원이 입력을 하면서 자동코딩시스템을 이용해서 산업분류 코드를 입력하는 방식도 있다. 본 연구에서는 전자의 방법을 자동화하는 것에 초점을 두었다. 딥러닝 알고리즘을 이용해서 기존에 코드부여가 완료된 자료를 가지고 실험을 해본 결과 조사된 모든 항목을 사용했을 때에는 CNN이 81.36%로 가장 좋은 성능을 보였고, 항목을 2가지로 (사업체가 주로 하는 일/응딥자가 한 일) 줄였을 경우 전체적으로 더 좋은 성능을 보였다. 그 중에 CNN-LSTM이 85.91%로 가장 좋은 성능을 보였다.
An Automated Industry and Occupation Coding System assigns statistical classification code to the enormous amount of natural language data collected from people who write about their industry and occupation. Unlike previous studies that applied information retrieval, we propose a system that does not need an index database and gives proper code regardless of the level of classification. Also, we show our model, which utilized KoBERT that achieves high performance in natural language downstream tasks with deep learning, outperforms baseline. Our method achieves 95.65%, 91.51%, and 97.66% in Occupation/Industry Code Classification of Population and Housing Census, and Industry Code Classification of Census on Basic Characteristics of Establishments. Moreover, we also demonstrate future improvements through error analysis in the respect of data and modeling.
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.49-52
/
2019
머신러닝을 이용한 악성코드 분류 시스템의 대부분이 캐글 데이터셋 10,868건을 사용하여 분류의 정확도를 측정한다. 이 데이터셋에 포함된 바이러스 바이트코드에는 미확인(undefined)필드라는 부분이 과도하게 존재한다. 캐글 데이터셋 특정 Label의 미확인필드 포함도는 75%가 넘는 경우도 존재한다. 이 경우 미확인 필드를 어떻게 처리하느냐가 시스템의 성능에 가장 큰 영향을 끼친다. 본 연구에서는 이러한 캐글 데이터셋의 미확인필드 처리방법을 제시하고 그에 따른 분류 정확도를 연구하였다. 다양한 처리방법에 대한 정확도를 측정하여 제안한 방식의 타당성을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.