• Title/Summary/Keyword: 산업폐열

Search Result 68, Processing Time 0.029 seconds

Development and Reliability Optimization of Economic Analysis Module for Power Generation System from Industrial Waste Heat Recovery (산업폐열 발전시스템 경제성분석 모듈 개발 및 신뢰성 최적화)

  • Ko, Areum;Park, Sungho;Kim, Joon-Young;Cha, Jae-Min
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The issue of global warming and environmental pollutant has become an international concern due to the widespread use of fossil fuels, and thus waste heat recovery technologies has become important to improve energy utilization. The global market of power generation system using industrial waste heat is rapidly growing at an average rate of 5% due to its advantage of increasing energy efficiency. In order to design an optimal waste heat recovery system, it is necessary to develop a program that offers economic evaluation of each power generating technology according to the heat source conditions. In this paper, the economic analysis module to calculate LCOE is developed and verified the reliability against NETL economic analysis results. As a result of the verification, the error rate is about 6 ~ 7%, which satisfy the accuracy for business feasibility evaluation. In order to enhance the reliability, the module was improved by applying the levelization method used by NETL. As a result of the verification of reliability, the error rate is less than 1% and the accuracy is improved.

Modeling of Municiapal Energy System Using Waste Heat (폐열을 이용한 도시에너지 시스템 모델링에 관한 연구)

  • 박수억;이덕기;백종건
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.10a
    • /
    • pp.9-14
    • /
    • 1998
  • “폐열을 이용한 도시에너지 시스템”은 산업단지나 발전소 등에서 발생되는 폐열을 회수하여 원격지로 수송을 하고, 도시지역의 수요처에서 수송된 열을 효율적으로 이용하는 에너지 시스템이다. 본 연구는“폐열을 이용한 도시에너지 시스템”모델링을 위해 시스템을 폐열공급원에서 최종 열수요처까지의 전체시스템을 이루는 GES(Global Energy System)와 열의 입출력·이송 저장·변환이 이루어지는 EFS(Energy Flow System)로 구분하였다. 그리고 EFS를 프로세스별로 구분하고, 이들을 최적화하는 시스템 모델링을 구축하였다.

  • PDF

산업단지 폐열이용 실증분석 사례

  • 박수억;이덕기
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.5
    • /
    • pp.31-36
    • /
    • 2002
  • 본고에서는 국내 산업단지에서 발생되고 있는 폐열의 에너지활용도를 제고하기 위해 폐열 활용에 대한 실증분석 사례를 제시하고자 한다

  • PDF

폐열은 곧 돈이다'소각폐열 이용한 스팀공급사업으로 새로운 수익창출

  • 에너지절약전문기업협회
    • The Magazine for Energy Service Companies
    • /
    • s.28
    • /
    • pp.22-25
    • /
    • 2004
  • ㈜코엔텍은 울산지역을 대표하는 산업폐기물 처리업체다. 이 사업장은 지난 2002년 소각폐열을 재활용해 남아도는 스팀을 인근 업체에 공급함으로써 수익을 벌어들이는 특수한 형태의 ESCO사업을 실시했다. 스팀공급사업을 통해 한해 벌어들이는 순수입이 약 16억원에 이른다. 이같은 사업의 시행이 가능했던 것은 지자체의 적극적인 지원과 코엔텍의 확고한 시행의지, 그리고 SK의 축적된 기술노하우가 결합했기 때문으로 풀이되고 있다.

  • PDF

Study on the Heat Recovery Design Methods for the Flue Gas from Combustion and Incineration Processes (연소 또는 소각 과정에서 발생하는 배기가스의 폐열 회수 설계 방법에 관한 연구)

  • Lee, Chan;Jung, Bong-Jin
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • Presented is the design method of the waste heat recovery facility for the flue gas produced from combustion and incineration processes of large industrial environmental waste treatment and cogeneration plants. The present study assumes the basic design concept of wast heat recovery facility as the combination of waste heat recovery boiler and steam power cycle, and then describes the modeling technique, the design concept and criteria of each component of waste heat recovery facility. In addition, the present study investigates how the thermal performance of waste heat recovery facility varies with boiler operating pressure and waste heat recovery heat exchanger design at the same flue gas condition.

  • PDF

Current Status of Waste Heat Recovery System in Cement Industry (시멘트 산업 폐열 회수 현황)

  • Young-Jin Kim;Jun-Hyung Seo;Yang-Soo Kim;Seok-Je Kwon;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.3-17
    • /
    • 2022
  • The cement industry, which is an energy-intensive and high carbon dioxide emission industry, requires strategy for carbon neutrality and sustainable development. Most domestic cement companies are generating electricity by waste heat recovery system to improve energy efficiency during cement processes; however, few studies exist on recycling of energy related to this. Certain countries with high cement production researched on modifying the conventional waste heat recovery system to maximize waste heat recovery using various methods such as applying the Rankine cycle depending on the temperature, comparing working fluids, applying two or more Rankine cycles, and combining with other industries. In this study, we reviewed the research direction for energy efficiency improvement by summarizing waste heat recovery and utilization methods in the domestic and overseas cement industries.

Design of Heating Supply System for Facility House using Industrial Chimney Waste Heat (산업용 굴뚝 폐열을 활용한 시설하우스 난방 공급 시스템 설계)

  • Chang-Jo Lee;Jin-Gwang Koh;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.661-668
    • /
    • 2023
  • A large amount of fuel is required for heating the agricultural facility house, and many farmhouses are experiencing the burden of heating costs due to the recent increase in fuel prices. This paper proposes a supply system that supports heating of agricultural facility houses located nearby by utilizing industrial chimney waste heat, and analyzes the application and effect of a heating cost reduction model. The system was designed based on the chimney waste heat system, and the facility house heating cost reduction model was applied and effect analysis was performed based on the proposed model. It was confirmed that the high-temperature waste heat from the chimney can be used to supply heating to facility houses in nearby farms. If heating is supplied to large-scale facility houses near industrial complexes, it is expected to contribute to improve productivity and competitiveness of domestic farms.

An Investigation Study on Fact of Waste Heat of Domestic Industry (국내 산업폐열 현황에 대한 조사연구)

  • 박일환;박준태;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.811-816
    • /
    • 2002
  • Waste heat exhausted from seven types of the domestic industry was surveyed, which include food, fibre, paper & wood, chemical, ceramics, metalworking and others. The databases of waste heat for each industry were made by using ACCESS software of Microsoft, and data were analyzed to get correlation between waste heat and purchase energy. The volume of usable waste heat is estimated to be 9,169,000 TOE in the year of 2000, when the minimum available temperature is set as $100^{\circ}C$ for waste gas, $30^{\circ}C$ for hot water and $100^{\circ}C$ for steam considering the condition of waste heat exhausting facilities and surroundings. This volume of waste heat is approximately 11.9 percent of the purchase energy of the domestic industry.

An Application Study on the Actual Site for Using Waste Heat (폐열을 이용한 열공급 실증 연구)

  • 이덕기;박수억;이승진
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.327-334
    • /
    • 2001
  • Heat is wasted by unconcern in industrial complex. This paper presented for using waste heat, which investigated step by step from searching waste heat to starting construction before and directly applied for the using waste heat in the actual site. Especially, using heat is assessed by investigation of heat supply and demand. Design of heat transportation system was made base on analysis of heat balance between demand and supply, which was analyzed by economical efficiency and property. Payback-period on investment was 1,909 years that was comparatively a short period of time in assessment.

  • PDF