• Title/Summary/Keyword: 산업부산물재활용

Search Result 127, Processing Time 0.029 seconds

Basic research for the reuse of algae by-products using vermicomposting (지렁이 퇴비화에 의한 조류 부산물 재활용 가능성에 대한 기초 연구)

  • Lee, Chang-Ho;Yang, Yong-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.69-76
    • /
    • 2010
  • After feeding mixed samples, VS ranged from 60 to 80% of total costs in 15 days. EC ranged from1.21 to 2.45, 1.25 to 2.1 and 1.2 to 1.88mS/cm when worms were fed with a mixture of by-products of tidal current and sewage sludge, a mixture of by-products of algae producy, and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes. That means the kinds of mixture don't have any negative impacts on worms survival. With the feed with a mixture of by-products of algae producy and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes, pH shows stable 5.4 to 6.7, and 6.2 to 7.4 where is suitable for worms. But a mixture of by-products of algae producy and sewage sludge is out of proper scope for raising worms, in other words, extra care will be necessary. In case of Eh, a mixture of by-products of algae producy and sewage sludge make eh negative (-) in early stage so also when feeding worms, also extra care will be needed. NaCl ranged from 0.32 to 0.82% or form 0.23 to 0.61% when a mixture of by-products of algae producy and food wastes and a mixture of by-products of algae producy, sewage sludge and food wastes were fed. So taking care of salts will be essential whenever feeding.

Effect of Acidic Leachate on the Cement-based Landfill Soil Liner System (고화토차수층에 대한 산성침출수의 영향과 대책방안 - 산업부산물(고로슬래그, 플라이애쉬) 재활용 방안 중심으로 -)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.265-269
    • /
    • 2006
  • This study was to investigate the effect of acidic leachate on the landfill liner system and healing of cracks by using industrial by-products; BFS(Blast Furnace Slag) and FA(Fly Ash). From the results of pH measurement, for OPC(Ordinary Portland Cement) and DM(Dredged Mud) mixtures immersed acidic leachate, the initial pH($4.5{\sim}5.5$) was heavily increased to approximately 10 after 60 days experiment due to the production of 2 mole $OH^-$ which was occurred by hydrolysis of CaO and MgO etc.. Meanwhile, the initial pH of acidic leachate immersed DM mixtures with BFS and FA respectively was lasted for longer period as compared to the comparison. The reason was that production of low Ca C-S-H hydrates which stabilized in acidic liquid. The physical properties(compressive strength, hydraulic conductivity) of DM mixtures added BFS and FA was improved. It was concluded that the dissolution of hydrates was disturbed by high alkalinity of BFS and FA.

Feasibility Study on Technology Status Level and Location Conditions of Urban Mining Industry in Abandoned Mine Area (도시광산 산업의 현황수준 및 폐광지역 입지여건 타당성 연구)

  • Ko, Ilwon;Park, Joo-Hyun;Park, Jae-Hyun;Yang, In-Jae;Lee, Seung-Ae;Kim, Dae-Yeop;Kim, Su-Ro
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.553-563
    • /
    • 2018
  • In this study, the location conditions and optimal technologies required for creating urban municipalities that can utilize the space in an abandoned mine area, where there is no infrastructure related to recycling wastes and valuable metals, are investigated. The urban mining industry deals with mineral resources through the processing of high value-added industrial by-products and wastes, and it is a useful linkage industry for the development of mineral resources and prevention of mining hazards. Urban mining technologies targeted at the abandoned mine area constitute screening, extraction, and smelting for recycling waste products. By analyzing the technologies available, an industrial network can be developed for recycling waste batteries and catalysts, which are promising raw materials. It is also important to establish an appropriate location for related industries that can generate value-added resources, rather than the resource supply and demand conditions seen in general urban mines. In order to overcome the accessibility and infrastructure limitations, the economic foundation of the abandoned mine area should consider the linkage of raw material supply, key technologies for recycling useful mineral resources that are derived from urban mines, spatial and site conditions, and industrial characteristics.

A Study on the Improvement of Property of Concrete using Copper Slag and Fly ash (동슬래그 및 플라이애쉬를 혼합하여 제작한 콘크리트의 성능 향상 연구)

  • Kim, Chun Ho;Lee, Won Goo;Kim, Nam Wook
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Generally, when using copper slag mixed into the concrete, due to higher weight of copper slag, a reduction in the compressive strength and durability of the hardened concrete to increased bleeding is caused. In this study, hence copper slag, a kind of by-product was used as an alternative to the fine aggregate, it was carried out in combination with the use of fly ash in eliminating disadvantage and recycling aspects. As a result of this study, the mixing of fly ash is decreased in the 50% of bleeding, 5% of drying shrinkage, 30% of carbonation test and improvement of 10% of compressive strength than that of copper slag only at most.

Properties and Applicability Evaluation of Control Low Strength Materials Used Industrial by-Products of A Great Quantity (다량의 산업부산물을 활용한 슬러리계 되메움 재료의 물성 및 현장적용 가능성 평가)

  • Liao, Xiaokai;Her, Jae-Won;Kim, Dong-Hun;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.40-41
    • /
    • 2020
  • This study has resulted in the following findings. First, Using more than 30% of GBFS to replace FA enabled bleeding control through improved fluidity. Moreover, it has been confirmed that effective strength and proper quality can be achieved when it was applied as a backfilling material with higher early strength than the base material. Second, When using more than 30% of FNS to replace sand, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Third, When using more than 30% of both GBFS and FNS in combination, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Also, it was confirmed that proper mixing of 15~60% of GF secured the effective strength and desired quality as a refiller and joint filler material.

  • PDF

Characteristics of White Portland Cement Clinker Produced from Low-temperature Sintering Technology using Fluorine based Semiconductor Sludge (불소 함유 반도체 슬러지를 활용한 저온 소성 기술로 제조된 백색 포틀랜드 시멘트 클링커 특성)

  • Su-Hyeon Park;Hyun-Yeop Na;Bong-Choon Hwang;Ju-il Eom;Yun-Yong Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • In this paper, the effect on cement clinker and cement quality was studied to prove the effect of reducing the sintering temperature of cement clinker as a mineralizer to recycle fluorine based semiconductor sludge, an industrial by-product. In addition, a verification study was conducted to compare the properties of clinker and cement at different temperatures when natural fluorite, previously used as a mineralizer, was used. As a result of the study, semiconductor sludge showed sufficient effectiveness as a mineralizer and could replace natural fluorite, an existing mineralizer.

Mechanical Properties of Non-cement Matrix Utilizing the Circulating Fluidized Bed Combustion Boiler Fly Ash and Dyeing Sludge Carbide (염색슬러지 탄화물과 순환 유동층 연소 보일러 플라이애시를 활용한 무시멘트 경화체의 역학적 특성)

  • Kim, Tae-Hyun;Lee, Seung-Ho;Lee, Yong;Shin, Jin-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.425-430
    • /
    • 2016
  • Both rapid industrial development and society has achieved more comfortable life. But, behind this facts of this industrial development have current pictures that occur global warming and much more by-products by environmental pollution. Therefore, this study used BFS and CFA as by-products to reduce cement usage emitted at a high rate of $CO_2$ gas, to examine sludge recycling strategy more than 200,000ton emitted at local dyeing complex, we suggest basic data research about non-cement matrix properties of utilizing dyeing sludge carbide. As a result, the more dyeing sludge carbide replacement ratio gets higher, the more air content and flow rise. Also, as the dyeing sludge carbide replacement ratio increase more, flexural strength and compressive strength go down.

Physical and Chemical Properties of Atomizing EFOS as Fine Aggregate for Concrete (아토마이징 전기로 산화슬래그 잔골재의 물리·화학적 특성)

  • Beom-Soo Kim;Sun-Mi Choi;Sang-Chul Shin;Sun-Gyu Park;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.70-78
    • /
    • 2023
  • Blast furnace slag, a by-product of the steel industry, is mostly recycled as concrete admixture, but electric arc furnace slag has not been recycled to date. In particular, since electric arc furnace slag partially contains free lime (free-CaO) in the discharge, it is necessary to review this in order to recycle f or construction materials. Recently an atomizing process which is a method of rapidly cooling electric arc furnace slag has been developed and applied. Therefore, in order to use the fine aggregate of oxidized slag from electric furnace restored by this method as an aggregate for concrete, physical damage and chemical reviewing are required. In this study, a physical and chemical review was conducted on the fine aggregate of Electric Arc Furnace Oxidizing Slag (EFOS) as a by-product of the steel manufacturing process with atomizing process. In this experimental study, EFOS was experimentally examined about whether it can be used as concrete fine aggregate. Also, we intend to provide basic data for the future use of the EFOS fine aggregate. As a result of the experimental study, it was found that the fine aggregate of the EFOS satisfied the quality standards of the fine aggregate for concrete in most items specified by Korean Standard.

State and Prospects of Organic Waste Composting in Korea (유기성 폐기물의 자원화 가능성 및 퇴비 이용 전망 평가)

  • Shin, Hang-Sik;Hwang, Eung-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.7-30
    • /
    • 1998
  • Generation and recycling potential of organic waste in Korea were estimated. Status of organic waste composting and compost utilization also were surveyed to promote the recycling of organic waste. From 1994 to 1997, generation of garbage decreased gradually while recycling rate increased due to positive governmental strategy. During the same period, livestock waste increased 11.2%. Municipal wastewater sludge was generated 3,500 ton/day which was 0.03% of wastewater treated in 1996. The energy Potential of industrial organic waste was estimated to 288 million TOE which was 1.75% of the nationwide first energy consumption in 1996. Recycling of industrial sludge was low to 31%, while recycling of animal waste, plant scraps, and wasted paper were relatively high over 50%. Industrial sludge should be recycled more as it was the most part of industrial organic waste. Conventional composting materials were mainly livestock waste, food processing waste, fishery waste, sawdust, and nightsoil. Garbage and sludge have been composted recently. 420,000 tons of compost in 1996 were produced by 288 makers, the most of which were utilized in agriculture. It was suggested that separated collection, compost standard, and quality management should be provided to promote the composting of organic waste.

  • PDF

The Environmental Safety Evaluation on Heavy Metal Leaching of Deteriorated Concrete under Severe Conditions (가혹한 조건에서 열화된 콘크리트의 중금속 용출에 대한 환경 안전성 평가)

  • Choi, Yun-Wang;Oh, Sung-Rok;Park, Man-Seok;Kim, Sang-Chel;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.539-546
    • /
    • 2013
  • Cement industry in 1997 began to use industrial waste in cement factory for purpose of resource recycling. However recently, environmental hazard of the cement in accordance with recycling of industrial waste have been raised a problem by contamination around the cement factory and heavy metal leaching in cement. In particular, the presence of $Cr^{6+}$ in cement has become a critical issue, the studies for minimizing of $Cr^{6+}$ in cement have been performed. But, in domestic, most of the research on heavy metal leaching was carried out from the perspective of the cement. Environmental safety assessment in terms of concrete is needed because cement is used to the concrete material. Therefore, this paper was evaluated heavy metals leaching of deteriorated concrete by severe conditions. test result showed that $Cr^{6+}$ were not detected from all the variables.