• Title/Summary/Keyword: 산소 ��칭

Search Result 11, Processing Time 0.025 seconds

Oxygen Transport in Axisymmetric Thrombosed Aneurysm (혈전이 있는 축대칭 동맥류에서의 산소전달현상)

  • 김한일;태기식;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.295-300
    • /
    • 2002
  • Localized hypoxia, due to the diminished $O_2$supply, is reported to cause necrosis of the arterial cell and to significantly decrease resistances to physiologic distending pressures. In the present study, in order to understand the mechanism of localized hypoxia which might result in the rupture of the aneurysm. $O_2$ transport phenomena across intraluminal thrombus in axisymmetric aneurysms under steady laminar flow condition were numerically analyzed using the Fick's law and the analogy with the fluid-solid heat transfer. For computational models, varying the thickness of intraluminal thrombus, numerical results showed that for the axisymmetric aneurysm with intraluminal thrombus. $O_2$ concentration became minimal at the aneurysm wall. With increased thickness of the intraluminal thrombus in the aneurysm. regions of low $O_2$ concentration were widely distributed near the aneurysm wall, which resulted in the possibility of localized hypoxia. The present study verifis that intraluminal thrombus influences $O_2$ transport to the aneurysm wall. depending on its size and structure.

Numerical Analysis of Turbulent Combustion of a Kerosene/Oxygen Coaxial Injector with a Recess (리세스가 있는 케로신/산소 동축 분사기의 난류 연소 유동 해석)

  • Choi, Jeong-Yeol;Shin, Jae-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.77-78
    • /
    • 2011
  • A multi-step quasi-global mechanism is developed for the kerosene/oxygen combustion analysis including dissociation products. Reaction constants of the global reaction are determined to have agreement with experimental data. The mechanism is used for the numerical analysis of the combustion flow field of the kerosene/oxygen shear coaxial injector. The results from high-resolution numerical analysis confirmed qualitatively that the recess enhance the fuel/air mixing and combustion efficiency by the increased flow instabilities.

  • PDF

Transient Analysis of Pressure Behavior of Cryogenics in Closed Vessel (극저온 저장용기의 내부압력 거동에 대한 비정상해석)

  • 강권호;김길정;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • Self-pressurization of cylindrical container of cryogen is numerically analyzed. The container is axi-symmetric and heated from side wall with constant heat flux. Natural convection by external heat flux is studied numerically using finite difference method. Oxygen, nytrogen and hydrogen are working fluids in this paper. Liquid is considered incompressible fluid and vapor is assumed to behave as gas meeting with virial equation of gas. The Second virial coefficients of gas are obtained from Lennard-jones model. The important variables which have effects on self-pressurization are external heat flux, heat capacity of wall and initial ullage in container. The most important variable of them is external heat flux. The pressure rise calculated from the virial gas model is slightly different from that calculated using Ideal gas model for oxygen.

  • PDF

On Numerical Modeling of Kerosene/Liquid Oxygen Coaxial Swirl Injectors (케로신/액체산소 동축 와류형 분사기에 대한 수치해석 모델 고찰)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.729-732
    • /
    • 2010
  • The present study has been motivated by the development of a reliable numerical methodology for simulation of kerosene/LOx coaxial swirl injectors. To deal with thermodynamic non-ideality and anomalies of transport properties pronounced at supercritical pressures, a set of subroutine libraries has been constructed based on the cubic equations of state, and applied to an existing flamelet analysis code. For computational efficiency, two-dimensional axisymmetric RANS formulation with swirl was adopted and validated successfully against an isothermal coaxial swirling jet. For the actual problem with high pressure combustion, however, numerical results show that the RANS models yield excessive production of turbulence probably due to high density gradient magnitude in the vicinity of mixing layer of swirling film flow, and imply strongly further improvement of the turbulence models.

  • PDF

PSP Pressure Field Visualization of an Oblique Impinging Jet (경사충돌제트의 PSP 압력장 가시화)

  • Kang Jong Hoon;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.10-13
    • /
    • 2004
  • The PSP(pressure sensitive paint) technique has recently received a large attention as a new revolutionary optical method to measure absolute pressure distribution on a model surface. The PSP technique can be applied to quantitatively investigate flow structure using a CCD camera and image processing technique. In the static calibration, the luminescent intensity of PSP coatings was measured from 0kPa to 11kPa with 0.5, 1, 2kPa increments. In this study, the low-pressure PSP technique was applied to an oblique impinging jet to measure pressure field variations on the impingement plate with varying angle of an oblique jet. The flow structure over the impingement plate was visualized using a surface tracing method. As a result, the detail pressure field distributions of the oblique low-speed impinging jet were visualized effectively using the PSP technique.

  • PDF

Development of Pressure Sensitive Paint (PSP) Technique for Low-speed Flows and Its Application (저속 유동용 Pressure Sensitive Paint 기술개발과 응용)

  • Kang, Jong-Hun;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.688-693
    • /
    • 2003
  • The PSP technique has been used to measure pressure distribution on a model surface quantitatively. The objective of this study is to develop PSP technique which can be applied to low-speed flows. Four different PSP formulations including two porphyrins (PtOEP and PtTFPP) and two polymers (Poly(TMSP) and RTV-118) were tested and the performance of each combination was checked. In the static calibration, the luminescent intensity of the PSP coatings was measured from 0kPa to 11kPa with 0.5, 1, 2kPa increments. Among 4 PSP formulations tested, the combination of PtOEP and RTV-118 shows the best performance. The PSP technique was applied to an oblique impinging jet to measure the pressure field distribution on the impinging plate.

  • PDF

Transient Analysis on Heat Transfer of Rocket Engine Combustion Chamber Considering Film-cooling (막냉각을 고려한 로켓엔진 연소실 열전달 비정상 해석)

  • Ha, Seong-Up;Moon, Il-Yoon;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.867-868
    • /
    • 2011
  • Transient Analysis on heat transfer of rocket engine combustion chamber and wall temperature variation was carried out, especially, calculations of LOx/kerosene rocket engine with/without fuel film-cooling were conducted. Convective and radiative heat flux inside combustion chamber wall were calculated by the empirical equations for rocket engine combustion, and conduction of wall interior was calculated by numerical method with 2D axisymmetric grid. In this calculations the transient variations of wall temperature, the location changes of peak temperature and so on affected by film-cooling were analyzed.

  • PDF

The Study of Mixing Characteristics for the cavity sizes in SCRamjet Combustor using PSP (PSP를 적용한 스크램제트 연소기 내부의 cavity 크기 변화에 따른 혼합특성에 관한 연구)

  • Jeong, Hui;Seo, Hyung-Seok;Choi, Won-Hyeok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.339-342
    • /
    • 2008
  • The PSP(Pressure Sensitive Paint) is a technique to measure continuous pressure distribution on medel surface by oxygen quenching. The objective of this study is to apply PSP which is measured pressure for analyzing that air-fuel mixing characteristics in SCRamjet combustor. Experimentation is performed at freestream Mach number of 2.5 and used fuel jet injection. The result shows that growing air-fuel mixed proportions by increasing in cavity size. Also, PSP results compared with conventional pressure tap and CFD. They are coincided with qualitative and the inclination.

  • PDF

Copper(II) Sorption Mechanism on Kaolinite : An EPR and EXAFS Study (캐올리나이트 표면에서의 구리 수착 메카니즘 : 전자상자성공명 및 EXAFS 연구)

  • Sung Pil Hyun;Kim F Hayes
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Copper(II) sorbed on kaolinite (KGa-lb) was studied using electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The sorbed copper(II) had an isotropic EPR signal with $g_{iso}\;=\;2.19$ at room temperature. At 77 K, the isotropic signal converted to an axially symmetric anisotropic signal with $g_{\$\mid$}\;=\;2.40,\;g_{\bot}\;=\;2.08,\;and\;A_{\$\mid$}\;=\;131\;G$. These EPR results suggest that the sorbed copper(II) forms an outer-sphere surface complex with a tetragonally distorted $CuO_{6}$ octahedral structure on the kaolinite. In the sorption measurement, the amount of sorbed copper increased with increasing pH of the solution. However, the intensity of the isotropic EPR line was not directly proportional to the amount of sorbed copper. This discrepancy was resolved by assuming the formation of a surface precipitate at higher pH that is invisible by EPR. The EXAFS data confirmed the existence of the surface precipitate. The best fit for the EXAFS of the sorbed copper showed that each copper on the kaolinite had 6.8 copper neighbors located $3.08\;{\AA}$ from it, in addition to the first shell oxygen neighbors, including 4 equatorial O at $1.96\;{\AA}$ and 2 axial O at $2.31\;{\AA}$. This work shows that the local environment of the copper sorbed on the kaolinite changes as a function of pH and surface loading, and that the EPR and EXAFS are useful in studying such changes.

Study on Estimations of Initial Mass Fractions of CH4/O2 in Diffusion-Controlled Turbulent Combustion Using Inverse Analysis (확산지배 난류 연소현상에서 역해석을 이용한 CH4/O2의 초기 질량분율 추정에 관한 연구)

  • Lee, Kyun-Ho;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.679-688
    • /
    • 2010
  • The major objective of the present study is to extend the applications of inverse analysis to more realistic engineering fields with a complex combustion process rather than the traditional simple heat-transfer problems. In order to do this, the unknown initial mass fractions of $CH_4/O_2$ are estimated from the temperature measurement data by inverse analysis in the practical diffusion-controlled turbulent combustion problem. In order to ensure efficient inverse analysis, the repulsive particle swarm optimization (RPSO) method, which belongs to the class of stochastic evolutionary global optimization methods, is implemented as an inverse solver. Based on this study, it is expected that useful information can be obtained when inverse analysis is used in the diagnosis, design, or optimization of real combustion systems involving unknown parameters.