• Title/Summary/Keyword: 산소 환원 반응

Search Result 317, Processing Time 0.025 seconds

A Chemical Reaction Calculation and a Semi-Empirical Model for the Dynamic Simulation of an Electrolytic Reduction of Spent Oxide Fuels (산화물 사용후핵연료 전해환원 화학 반응 계산 및 동적 모사를 위한 반실험 모델)

  • Park, Byung-Heung;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.19-32
    • /
    • 2010
  • Electrolytic reduction technology is essential for the purpose of adopting pyroprocessing into spent oxide fuel as an alternative option in a back-end fuel cycle. Spent fuel consists of various metal oxides, and each metal oxide releases an oxygen element depending on its chemical characteristic during the electrolytic reduction process. In the present work, an electrolytic reduction behavior was estimated for voloxidized spent fuel based on the assumption that each metal-oxygen system is independent and behaves as an ideal solid solution. The electrolytic reduction was considered as a combination of a Li recovery and chemical reactions between the metal oxides such as uranium oxide and the produced Li metal. The calculated result revealed that most of the metal oxides were reduced by the process. It was evaluated that a reduced fraction of lanthanide oxides increased with a decreasing $Li_2O$ concentration. However, most of the lanthanides were expected to be stable in their oxide forms. In addition, a semi-empirical model for describing $U_3O_8$ electrolytic reduction behavior was proposed by considering Li diffusion and a chemical reaction between $U_3O_8$ and Li. Experimental data was used to determine model parameters and, then, the model was applied to calculate the reduction yield with time and to estimate the required time for a 99.9% reduction.

Mutagenicities of Carbonyl Compounds Derived from Maillard Reaction and their Desmutagenicity Mechanisms (Maillard 반응 유래(由來) 저분자 카르보닐화합물의 돌연변이원성과 그 억제기구)

  • Kim, Seon-Bong;Yeom, Dong-Min;Do, Jeong-Ryong;Yoon, Hyeung-Sik;Byun, Han-Seok;Kim, In-Soo;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.435-440
    • /
    • 1989
  • The present study was attempted to investigate the mutagenicities of carbonyl compounds(methyl glyoxal, glyoxal, diacetyl, dihydroxyacetone, glycolaldehyde, glyceraldehyde and furfural) derived from Maillard reaction toward Salmonella typhimurium TA 100(base-substitution mutant) without metabolic activation . And for further Investigation of mutagenicity mechanism including desmutagenicity, active oxygen scavengers (cysteine, ${\alpha}-tocopherol$, tris (hydroxymethyl) aminomethane, catalase, ascorbic acid) and reducing agents (glutathione, sodium bisulfite) were also used. Among carbonyl compounds tested, methyl glyoxal, glyoxal, dihydroxyacetone, glycolaldehyde and glyceraldehyde exhibited mutagenicities, and methyl glyoxal showed the strongest mutagenic activity. On the other hand , the mutagenicities of carbonyl compounds were significantly suppressed by cysteine, tris (hydroxymethyl) aminomethane, glutathione and sodium bisulfite. Also, these active oxygen scavengers and reducing agents alone did not show mutagenicity in the present study.

  • PDF

Oxygen Reduction Reaction of La1-xCaxCoO3 of Gas Diffusion Electrode in Alkaline Fuel Cell (알칼리형 연료전지용 La1-xCaxCoO3 기체확산전극의 산소환원반응)

  • Shim, Joong-Pyo;Park, Yong-Suk;Lee, Hong-Ki;Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.992-998
    • /
    • 1996
  • The $La_{0.8}Ca_{0.2}CoO_3$ prepared by a citrate process was shown to have higher oxygen reduction current density and specific activity than $LaCoO_3$, $La_{0.6}Ca_{0.4}CoO_3$. In the cyclic voltammogram, an oxygen desorption peak of a $La_{0.8}Ca_{0.2}CoO_3$+carbon electrode was larger than that of a only carbon electrode. $La_{0.8}Ca_{0.2}CoO_3$ sintered at $900^{\circ}C$ for 5 hours was shown high oxygen reduction current density because of the particle size distribution and sintering effect.

  • PDF

광물질(V) -유황(S)

  • 최진호
    • KOREAN POULTRY JOURNAL
    • /
    • v.24 no.9 s.275
    • /
    • pp.163-165
    • /
    • 1992
  • 어떤 관점에서 유황은 산소와 비슷한 화학적 성질을 가진다. 만일 태고의 지구상의 대기에 산소가 축적되기 전에 어떤 종류의 혐기성 생물이 존재하였다면 유황은 매우 중요한 역할을 담당하였을 것으로 생각된다. 오늘날 존재하는 소위'유황박테리아'는 아마도 유화수소($H{_2}S$)가 풍부했던 태고의 대기에서 존재했던 생물체의 초기 형태일지도 모른다. 뿐만아니라 오늘날의 고등 동식물에서도 각종 유황을 함유하는 화합물들(특히-SH기를 함유하는 화합물)은 각종 산화-환원 반응에 조효소로서 중요한 기능을 수행하고 있다.

  • PDF

$TiO_2$/Carbon felt의 광전기 화학반응에 의한 퍼클로레이트 이온 제거

  • Kim, Jong-U;Min, Hyeong-Seop;Ju, Byeong-Gwon;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.57.2-57.2
    • /
    • 2009
  • 퍼클로레이트 이온($ClO_4^-$)는 자연적으로 혹은 인공적으로 만들어지며 퍼클로릭산이나 암모늄 퍼클로레이트나, 포타슘 퍼클로레이트 혹은 소듐퍼클로레이트 염의 형태로 존재하며, 물에 아주 잘 녹고, 끓여도 제거되지 않으며, 활성 탄소와 같은 광물에도 흡착 되지 않는 성질로 인해, 기존 물리적인 정수 방법으로는 제거하기 어렵다. 또한 우리 몸에 흡수되면, 요오드가 갑상선에 흡수되는 작용을 방해하여 갑상선 기능장애를 초래한다. 이러한 퍼클로레이트 이온의 제거방법으로는 이온교환법이나 생물학적 방법 등이 개발되어져 있으나, 제거 시스템에 이동 및 안전한 농도까지 제거 등의 문제점으로 인한 퍼클로레이트 이온을 환원시키는 촉매 환원 반응에 의한 퍼클로레이트 이온 제거 기술 개발이 필요하다. 이런 촉매 환원에 필요한 수소 환원제를 발생시키기 위해서, 본 연구에서는 Carbon felt 위에 DC magnetron sputtering에 의한 thin film $TiO_2$과 regine을 이용한 powder $TiO_2$ 시편을 제작하였다. 이렇게 제작 된 $TiO_2$/Carbon felt의 미세구조 및 특성은 XRD, SEM, UV-vis-NIR 등을 통하여 분석하였다. UV 조사에 의해 $TiO_2$/Carbon felt 시편의 산소와 수소 발생과 DC bias의 걸어주었을 때 산소와 수소 발생 차이 등을 비교하였고, 이에 따른 퍼클로 레이트 이온의 분해 영향을 알아보았다.

  • PDF

Synthesis of Titanium Hydride Powder Via Magnesiothermic Reduction of TiCl4 in H2 gas Atmosphere (수소분위기 내 사염화타이타늄의 마그네슘 열환원을 이용한 수소화타이타늄 분말 합성)

  • Sung-Hun Park;So-Yeong Lee;Ho-Seong Lee;Jungshin Kang;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.19-32
    • /
    • 2023
  • A novel method for the synthesis of titanium hydride powder from titanium tetrachloride via the magnesiothermic reduction in an hydrogen gas atmosphere was investigated. To examine the influence of temperature on the formation of titanium hydride, the reduction was conducted at 1023~1123 K under 1 atm of hydrogen gas atmosphere for approximately 30 min. Subsequently, the titanium hydride powder was sintered by maintaining the temperature for 0~120 min, and the decrease in the oxygen concentration of the powder was investigated. The experimental results showed that TiH1.924 was produced at 1023 K, whereas mixtures of TiH1.924 and TiH1.5 were produced at 1073 K and 1123 K. In addition, the hydrogen concentration in the powder decreased with increasing temperature. The concentration of oxygen in the powder decreased with increasing temperature and sintering time owing to the decrease in the specific surface area of the powder. The minimum concentration of oxygen was 0.246 mass% when the mixture of TiH1.924 and TiH1.5 was obtained at 1073 K and a sintering time of 120 min.

Decomposition of CO2 with Reduced ferrite by CH4 (CH4로 환원된 페라이트를 이용한 CO2 분해)

  • 신현창;정광덕;주오심;한성환;김종원;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.657-662
    • /
    • 2002
  • The reduced ferrites, reduced NiF $e_2$ $O_4$ and CuF $e_2$ $O_4$, by C $H_4$ were applied to $CO_2$ decomposition to avoid the greenhouse effects. At the reduction reaction above $700^{\circ}C$, $H_2$ and CO were generated by partial oxidation of C $H_4$ After the reduction reaction up to 80$0^{\circ}C$, the spinel structure ferrites changed to mixture of the oxygen deficient iron oxide (Fe $O_{(1-{\delta})}$(0$\leq$$\delta$$\leq$1)) and the metallic Ni or Cu. The rate and quantity of $CO_2$ decomposition with reduced CuF $e_2$ $O_4$ were larger than those with reduced NiFe $O_4$. The $CO_2$ gas was decomposed by oxidation of the oxygen deficient iron oxide. The metallic Cu and Ni were not oxidized and remained in a metallic state up to 80$0^{\circ}C$. The $CO_2$ decomposition reaction with the reduced ferrite by C $H_4$ gas is excellent process preparing useful gas such as $H_2$and CO and decomposing $CO_2$ gas.

Manganese Oxide Catalyzed Fenton-like Reduction of Chlorinated Compounds (산화망간으로 촉매화된 펜톤유사반응을 적용한 염소계화합물의 환원분해)

  • 김상민;공성호;김용수
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.95-102
    • /
    • 2002
  • Manganese oxide/ hydrogen peroxide($MnO_2$/${H_2}{O_2}$) reactions were investigated as an alternative to Fenton-like reaction to reduce chlorinated organic compounds in groundwater This system showed high degradation of CT with low ${H_2}{O_2}$concentration($\leq$294mM) at neutral condition, and CT degradation increased with increasing pH values. The rate of CT degradation was not so much dependent on increase in $MnO_2$concentration since increase in production of oxygen during the reaction obstructed reaction of ${H_2}{O_2}$ on the surface of $MnO_2$. These results show that $MnO_2$catalyzed Ponton-like reaction could be a potential alternative method for treating chlorinated organic compounds in groundwater.

Development of methanol resistance catalysts for DMFC cathodes (Methanol에 저항성을 가진 DMFC용 cathode catalyst의 개발)

  • Oh, Jong-Gil;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.204-207
    • /
    • 2007
  • DMFC(direct methanol fuel cell)는 액체연료의 이동과 저장의 용이성 때문에 이동용 장치를 위한 전원공급 장치로서 오랫동안 관심을 받아왔다. 하지만 methanol crossover는 DMFC의 상용화 이전에 해결해야 할 문제이다. 이를 위해 많은 분야에서 연구가 진행되고 있고, 그중에서 methanol에 저항성을 가진 촉매의 개발에 활발히 연구가 진행되고 있다. 본 연구에서는, 표연개질 된 PtCo/C 촉매를 사용하여 메탄올에 저항성을 가진 촉매를 합성하였다. 합성된 촉매의 size와 morphology를 알아보기 위해 transmission electron microscopy (TEM)를 사용하였다. 또한 methanol 존재 하에 산소환원반응의 activity를 알아보기 위해 Rotating ring disk electrode(RRDE) test를 하였고, MEA를 제작하여 full cell test도 병행하였다.

  • PDF

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized by a Modified Polyol Process (수정된 폴리올 방법을 적용하여 합성한 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Hyun, Kyuwhan;Chu, Cheunho;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • In this research, we evaluated the performance and characteristics of carbon supported PtM (M = Ni and Y) alloy catalysts (PtM/Cs) synthesized by a modified polyol method. With the PtM/Cs employed as a catalyst for the oxygen reduction reaction (ORR) of cathodes in proton exchange membrane fuel cells (PEMFCs), their catalytic and ORR activities and electrical performance were investigated and compared with those of commercial Pt/C. Their particle sizes, particle distributions and electrochemically active surface areas (EAS) were measured by TEM and cyclic voltammetry (CV), while their ORR activity and electrical performance were explored using linear sweeping voltammetries with rotating disk electrodes and rotating ring-disk electrodes as well as PEMFC single cell tests. TEM and CV measurements show that PtM/Cs have the compatible particle size and EAS with Pt/C. When it comes to ORR activity, PtM/C showed the equivalent or better half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production(%) to or than commerical Pt/C. Based on results gained by the three electrode tests, when the PEMFC single cell tests were carried out, the current density measured at 0.6 V and maximum power density of PEMFC single cell adopting PtM/C catalysts were better than those adopting Pt/C catalyst. It is therefore concluded that PtM/C catalysts synthesized by modified polyol can result in the equivalent or better ORR catalytic capability and PEMFC performance to or than commercial Pt/C catalyst.