• Title/Summary/Keyword: 산소 환원 반응

Search Result 316, Processing Time 0.025 seconds

Electrocatalytic Effect of Dioxygen Reduction at Glassy Carbon Electrode Modified with Schiff Base Co(II) Complexes (Schiff Base Co(II) 착물이 변성된 유리질 탄소전극에서 산소 환원의 전기촉매 효과)

  • Seong, Jeong-Sub;Chae, Hee-Nam;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.460-468
    • /
    • 1998
  • Schiff base ligands such as $SOPDH_2$, $SNDH_2$, $EBNH_2$, and $PBNH_2$ and their Co(II) complexes such as [$Co(II)(SND)(H_2O)_2$], [$Co(II)(SOPD)(H_2O)_2$], [$Co(II)(EBN)(H_2O)$], and [$Co(II)(PBN)(H_2O)$] have been synthesized. The mole ratio of Shiff base ligand to cobalt(II) for the Co(II) complexes was found to be 1:1. Also these complexes have been configurated with hexa-coordination. Reduction of dioxygen was investigated by cyclic voltammetry at glassy carbon electrodes modified with Schiff base Co(II) complexes in 1 M KOH aqueous solution. At modified glassy carbon electrode with Schiff base Co(II) complexes, reduction peak current of oxygen was increased and peak potential was shifted to more positive direction compared to bare glassy carbon electrode. The electrokinetic parameters such as number of electron and exchange rate constant were calculated from the results of cyclic voltammogrms. The reduction of dioxygen at glassy carbon electrode has been $2e^-$ reaction pathway. Exchange rate constant at glassy carbon electrode modified with Co(II) complexes was increased 2~10 times compared to bare electrode.

  • PDF

Deoxidation of Titanium Scrap by Calciothermic Reduction (칼슘열환원법(熱還元法)에 의한 타이타늄 스크랩의 탈산(脫酸))

  • Yoon, Moo-Won;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.41-47
    • /
    • 2013
  • In this study, deoxidation of Ti scrap using liquid calcium was investigated. Experiments were conducted in a closed stainless steel chamber under Ar atmosphere during 30 to 90 minutes. Oxygen content of Ti scrap was reduced from 0.54 to 0.19 wt% by calciothermic reduction in 30 minutes at $1000^{\circ}C$ and 2.5 Ti/Ca mass ratio. By the calciothermic reduction of Ti scrap for 30 minutes under the reaction temperature of $1100^{\circ}C$ and 2.5 Ti/Ca mass, a minimum oxygen content of about 0.126 wt% in Ti scrap was obtained.

A Study on Direct Decomposition and Selective Catalytic Reduction of NO over Ru-HZSM-5 Catalyst in the Presence of Excess Oxygen (과잉 산소 존재 하에서 Ru-HZSM-5촉매를 사용한 NO 분해 반응 및 선택적 촉매 환원 반응에 관한 연구)

  • Bae, Jae Yong;Chung, Sang Chul;Lee, Wha Young
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.355-360
    • /
    • 1998
  • Reduction activity of precious metal-loaded HZSM-5 for NO has been studied and was compared to that of Cu-HZSM-5 in the presence of excess oxygen. It was found that among the catalysts used in this study, Ru-HZSM-5 was the most active catalyst for the reduction of NO to $N_2$ in the absence of hydrocarbon reductant. The highest conversion obtained was 45%. No severe inhibition of water vapor to the reduction was observed. It is suggested that the higher catalytic activity of Ru-HZSM-5 may result from the better ability to oxidize NO to $NO_2$ in the presence of excess oxygen. A proposed reaction mechanism for the reduction of NO to $N_2$ in the presence of excess oxygen is that NO is oxidized to $NO_2$ on the surface of Ru-HZSM-5 catalyst and the adsorbed $NO_2$ on the surface is then decomposed to $N_2$. $NO_2$ is supposed to the reaction.

  • PDF

Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process (전해환원 공정의 우라늄 산화물 환원 거동 모사를 위한 Phase-Field 이론 적용)

  • Park, Byung Heung;Jeong, Sang Mun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.291-299
    • /
    • 2018
  • Under a pyro-processing concept, an electrolytic reduction process has been developed to reduce uranium oxide in molten salt by electrochemical means as a part of spent fuel treatment process development. Accordingly, a model based on electrochemical theory is required to design a reactor for the electrolytic reduction process. In this study, a 1D model based on the phase-field theory, which explains phase separation behaviors was developed to simulate electrolytic reduction of uranium oxide. By adopting parameters for diffusion of oxygen elements in a pellet and electrochemical reaction rate at the surface of the pellet, the model described the behavior of inward reduction well and revealed that the current depends on the internal diffusion of the oxygen element. The model for the electrolytic reduction is expected to be used to determine the optimum conditions for large scale reactor design. It is also expected that the model will be applied to simulate the integration of pyro-processing.

A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell I. Synthesis of La0.6Sr0.4Co1-xFexO3 and Reduction Reaction of Oxygen (알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 I. La0.6Sr0.4Co1-xFexO3의 합성과 산소환원반응)

  • Moon, Hyeung-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.543-553
    • /
    • 1996
  • Oxygen reduction in an alkaline fuel cell was studied by using perovskite type oxides as an oxygen electrode catalyst. The high surface area catalysts were prepared by malic acid method and had a formula of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35 and 0.50). From the result of XRD pattern and specific surface area due to the amount of Fe substitution and the consumption of ammonia-water, the complex formation of Fe ion with $NH_3$ was the main factor for both the phase stability of perovskite and the increase of specific surface area. Multi-step calcination was necessary to give a single phase of perovskite in catalyst precursor. The crystal structure of the catalysts was simple cubic perovskite, which was verified from the XRD patterns of the catalysts. The activity of oxygen reduction was monitored by the techniques of cyclic voltammetry, static voltage-current method, and current interruption method. The activity(current density) of oxygen reduction showed its minimum at x=0.01 and its maximum between 0.20 and 0.35 of x-value in $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$. This tendency was independent of the change of surface area.

  • PDF

Atmospheric Effects on Corrosion of Iron in Borate Buffer Solution (Borate 완충용액에서 철의 부식에 대한 대기의 영향)

  • Kim, Hyun-Chul;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.673-678
    • /
    • 2012
  • Using potentiodynamic and linear polarization method, the atmospheric effect on the corrosion of iron in borate buffer solution was investigated. The corrosion of iron was heavily influenced by the degree of oxygen concentration. The supply of reduction current was increased by the reduction of dissolved oxygen, and the corrosion potential of iron was shifted to the positive side. The $OH^-$ ion, which was produced through the reduction of either water or oxygen, significantly increased the $OH^-$ ion concentration inside of the electrical double layers of iron electrode, and facilitated the adsorption of $OH^-$ ion on the surface of the iron electrode. The adsorption of $OH^-$ ion on the iron electrode can be explained either by Langmuir isotherm or by Temkin logarithmic isotherm.