• Title/Summary/Keyword: 산소분산

Search Result 154, Processing Time 0.03 seconds

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation (자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교)

  • Ha, Byung-Jo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.220-225
    • /
    • 2020
  • Hair is made of proteins containing various amino acids. Ultraviolet (UV) radiation is believed to be responsible for the most damaging effects of sunlight, and also plays an important role in hair aging. The purpose of this study was to investigate the changes in morphological and chemical structures after ultraviolet B (UVB) irradiation of human hair. The UVB-irradiated hair showed characteristic morphological and structural changes, compared to those of the normal hair. The result from a scanning electron microscope (SEM) equipped with an energy dispersive X-ray diffractometer (EDX) showed that the scale of UV-irradiated hair appeared to be rough and the amount of oxygen element was higher than that of the normal hair. Fluorescence and three dimensional (3D) topographical images were obtained by a confocal laser scanning microscope (CLSM). In 3D images, the green emission intensity of normal hair was much higher than that of fluorescing UVB-irradiated hair. The intensity of green emission reflects the intrinsic fluorescence of hair protein. Also, a fluorescent imaging method using fluorescamine reagent was used to identify the free amino groups resulting from a peptide bond breakage in UVB-irradiated hair. Strong blue fluorescence of UVB-irradiated hair, which indicates a very high level of amino groups, was observed by CLSM. Therefore, the fluorescamine as an extrinsic fluorescence could provide a useful tool to identify the peptide bond breakage in UVB-irradiated hair. Infrared image mapping was also employed to assess the cross-sections of normal and UVB-irradiated specimens to examine the oxidation of disulfide bonds. The degree of peak areas with strong absorbance for the disulfide mono-oxide was spread from the outside to the inside of hair. The spectroscopic techniques used alone, or in combination, launch new possibilities in the field of hair cosmetics.

The Development of N2O Emission Factor at Municipal Solid Waste Incinerator (도시고형폐기물 소각시설의 N2O 배출계수 개발)

  • Ko, Jae Churl;Choi, Sang Hyun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.40-45
    • /
    • 2019
  • In this study, nitrous oxide ($N_2O$) emission concentration was measured 3 times continuously for 24 hours from August 27, 2018 to October 22, 2018 and non-dispersive infrared (NDIR) spectrometer was used to calculate $N_2O$ concentration of exhaust gas from municipal solid waste (MSW) incinerator. As a result of $N_2O$ emission characteristics, it is estimated that $N_2O$ emission concentration is due to the difference of furnace temperature, oxygen concentration rather than the chemical component of waste. The measured $N_2O$ emission concentration of MSW incinerator was obtained in the range of 53.6 ~ 59.5 ppm and the total average concentration was measured 55.6 ppm. Therefore, the amount of $N_2O$ emissions calculated from the $N_2O$ concentration was $98.05kg\;day^{-1}$ on average and the amount of $N_2O$ distribution in the range of $90.41{\sim}108.44kg\;day^{-1}$ was obtained. As a result, the $N_2O$ emission factor of the MSW incinerator was estimated to be $1,066.13g_{N_2O}\;ton_{waste^{-1}}$. The estimated $N_2O$ emission factor of the MSW incinerator was 20 times higher than calculated emission factor used in the Tier 2 method. Consequently, it is considered that the method of calculating the amount of $N_2O$ emission in the MSW incineration facilities using waste type and incineration amount needs to be supplemented to ensure accuracy.

Electrochemical Behaviors of Pt-Ru Catalysts on the Surface Treated Mesoporous Carbon Supports for Direct Methanol Fuel Cells (직접메탄올 연료전지용 표면처리된 중형기공 탄소지지체에 담지된 백금-루테늄 촉매의 전기화학적 거동)

  • Kim, Byung-Ju;Seo, Min-Kang;Choi, Kyeong-Eun;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • In this work, the effect of surface treatment on mesoporous carbons (MCs) supports was investigated by analyzing surface functional groups. MCs were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in direct methanol fuel cells (DMFCs). The MCs were treated with different phosphoric acid ($H_3PO_4$) concentrations i.e., 0, 1, 3, 4, and 5 M at 343 K for 6 h. And then Pt-Ru was deposited onto surface treated MCs (H-MCs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto H-MCs were determined by specific surface area and pore size analyzer, X-ray diffraction, X-ray photoelectron, transmission electron microscopy, and inductive coupled plasma-mass spectrometer. The electrochemical properties of Pt-Ru/H-MCs catalysts were also analyzed by cyclic voltammetry experiments. From the results of surface analysis, an oxygen functional group was introduced to the surface of carbon supports. From the results, the H4M-MCs carbon supports surface treated with 4 M $H_3PO_4$ led to uniform dispersion of Pt-Ru onto H4M-MCs, resulting in enhancing the electro-catalytic activity of Pt-Ru catalysts.

Preparation and Characterization of UV-cured Polyurethane Acrylate/ZnO Nanocomposite Films (자외선 경화형 폴리우레탄 아크릴레이트/ZnO 나노콤포지트 필름의 제조 및 특성 분석)

  • Jeon, Gwonyoung;Park, Su-il;Seo, Jongchul;Seo, Kwangwon;Han, Haksoo;You, Young Chul
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.610-616
    • /
    • 2011
  • A series of polyurethane acrylate/ZnO (PUA/ZnO) nanocomposite films with different ZnO contents were successfully prepared via a UV-curing system. The synthesis and physical properties including morphological structure, thermal properties, barrier properties and optical properties, and antimicrobial properties were investigated as a function of ZnO concentration. FTIR and SEM results showed that these PUA/ZnO nanocomposite films did not have a strong interaction between PUA and ZnO, which may lead to no increase in thermal stability. By incorporating ZnO nanoparticles, the UV blocking and antibacterial properties increased as the content of ZnO increased. Specially, the oxygen permeability in composite films changed from $2005cc/m^2/day$ to $150cc/m^2/day$ by adding the ZnO nanoparticle, which indicates that the PUA/ZnO nanocomposite films can be applied as good barrier packaging materials. Physical properties of the UV-cured PUA/ZnO nanocomposite film are strongly dependent upon the dispersion state of ZnO nanoparticles and their morphology in the films.

Monitoring of Groundwater quality according to groundwater use for agriculture (농업용 지하수 사용에 따른 지하수질 모니터링 평가)

  • Ha, Kyoochul;Ko, Kyung-Seok;Lee, Eunhee;Kim, Sunghyun;Park, Changhui;Kim, Gyoo-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.30-30
    • /
    • 2020
  • 본 연구에서는 여름철에 농업용수(벼농사용)로서 집중적으로 지하수를 사용하는 지역에서 시기별 지하수 사용에 따른 지하수 수질변화를 평가하기 위해 수행되었다. 연구지역은 충남 홍성군 양곡리와 신곡리 일부를 포함하는 면적 2.83 ㎢(283.3 ha)에 해당하는 지역이다. 연구지역 지하수 수질의 공간적 분포 및 시간적 변화 특성 평가를 위하여 2019년 2회(7월, 10월)에 걸쳐 지하수 관정(21개소)에 대하여 조사 및 분석을 수행하였다. 지하수 샘플은 현장에서 온도(T), pH, 용존산소(DO) 및 전기전도도(EC), 산화환원전위(Eh) 등을 측정하였고, 실험실에서 주요 양이온 및 미량원소(Ca, Mg, Na, K, Si, Sr), 음이온(F, Cl, Br, NO2, NO3, PO4, SO4), 알칼리도, 용존 유기탄소(DOC)와 용존 유기물(DOM) 등을 분석하였다. 지하수 수질조사 결과, 전체의 14~15개소(67~71%)가 Ca-HCO3 유형으로 분류되었으며, 다음으로는 Ca-Cl 유형이 4~5개소(19~24%)가 관찰되었다. 얕은 심도의 관정에서 상대적으로 심도가 깊은 관정보다 대부분 성분(TDS, Ca, Mg, Na, K, Cl, SO4, HCO3, DOC)에서 높은 농도를 나타내었다. 지하수의 수질자료를 이용하여 다변량통계분석법인 주성분분석(PCA: Principal Components Analysis)과 계층적 군집분석(HCA: Hierachical Cluster Anlaysis)를 수행한 결과, 초기 3개 주요 고유성분(eigenvalue)는 PC1 54.0%, PC2 14.2%, PC3 12.3%로 전체 분산의 88.3%를 설명할 수 있었다. PC1은 Ca, Mg, Na, K, Cl, SO4, DOC가 주요한 영향 인자였으며 PC2는 HCO3, NO3, DO에 영향 받음을 확인하였다. 계층적 군집분석 결과, 연구지역 지하수는 Na-Cl 유형의 C-3 관정을 제외하고는 크게 두 그룹으로 구분되어 졌다. 다변량통계분석의 결과에서도 수리지화학, 동위원소, 용존유기물 등의 특성에서 나타나는 것과 유사한 연구지역의 수질특성을 확인할 수 있었다. 연구지역은 차시기 동안 수질변화는 일부 관정을 제외하고는 유의할 만한 수준으로 관찰되지는 않았고, 지하수 사용에 따른 지하수위 회복도 빠르게 진행되고 있는 것으로 나타났다.

  • PDF

Effect of Pt as a Promoter in Decomposition of CH4 to Hydrogen over Pt(1)-Fe(30)/MCM-41 Catalyst (Pt(1)-Fe(30)/MCM-41 촉매상에서 수소 제조를 위한 메탄의 분해 반응에서 조촉매 Pt의 효과)

  • Ho Joon Seo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.674-678
    • /
    • 2023
  • The effect of Pt was investigated to the catalytic methane decomposition of CH4 to H2 over Pt(1)-Fe(30)/MCM-41 and Fe(30)/MCM-41 using a fixed bed flow reactor under atmosphere. The Fe2O3 and Pt crystal phase behavior of fresh Pt(1)-Fe(30)/MCM-41 were obtained via XRD analysis. SEM, EDS analysis, and mapping were performed to show the uniformed distribution of nano particles such as Fe, Pt, Si, O on the catalyst surface. XPS results showed O2-, O- species and metal ions such as Pt0, Pt2+, Pt4+, Ft0, Fe2+, Fe3+ etc. When 1 wt% of Pt was added to Fe(30)/MCM-41, automic percentage of Fe2p increased from 13.39% to 16.14%, and Pt4f was 1.51%. The yield of hydrogen over Pt(1)-Fe(30)/MCM-41 was 3.2 times higher than Fe(30)/MCM-41. The spillover effect of H2 from Pt to Fe increased the reduction of Fe particles and moderate interaction of Fe, Pt and MCM-41 increased the uniform dispersion of fine nanoparticles on the catalyst surface, and improved hydrogen yield.

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

The effect of blasting and anodizing-combined treatment of implant surface on response of osteoblast-like cell (분사처리 후 양극산화 처리한 임플란트 표면이 골모 유사 세포의 반응에 미치는 영향)

  • Seo, Bo-Yong;Kim, Young-Min;Choi, Jae-Won;Yun, Mi-Jung;Jeon, Young-Chan;Jeong, Chang-Mo;Kim, Gyu-Cheon;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • Purpose: The purpose of this study is to examine characteristics of implant surface with RBM and anodizing treatments, and to evaluate the responses of osteoblast-like cell (MG-63 cell). Materials and methods: Grade IV titanium disks were fabricated (Diameter 10 mm, thickness 3 mm). Anodizing treatment (ASD) group, RBM and anodizing treatment (RBM/ASD) group, control (machined surface) group were divided. In this study, osteoblast-like cell was used for experiments. The experiments consist of surface characteristics evaluation by FE-SEM images, energy dispersive spectroscopy and stereo-SEM. In order to evaluate cell adhesion evaluation by crystal violet assay and observe cells form by confocal laser microscopy. To assess cell proliferation by XTT assay, cell differentiation by RT-PCR and mineralization by Alizarin red S stain assay. ELISA analyzer was used for Quantitative evaluation. Comparative analysis was run by one-way ANOVA (SPSS version 18.0). Differences were considered statistically significant at P<.05. Results: In ASD group and RBM/ASD group, the surface shape of the crater was observed and components of oxygen and phosphate ions in comparison with the control group were detected. The surface average roughness was obtained $0.08{\pm}0.04{\mu}m$ in the control group, $0.52{\pm}0.14{\mu}m$ in ASD group and $1.45{\pm}0.25{\mu}m$ in RBM/ASD group. In cell response experiments, ASD group and RBM/ASD group were significantly higher values than control group in cell adhesion and mineralization phase, control group was the highest values in the proliferative phase. In RT-PCR experiments, RBM/ASD group was showed higher ALP activity than other groups. RBM/ASD group in comparison with ASD group was significantly higher value for cell adhesion and proliferation phase. Conclusion: In the limitation of this study, we are concluded that the surface treatment with RBM/ASD seems more effective than ASD alone or machined surface on cellular response.

Bioecological Studies in the Upwelling Area of Cheju Island. ( I ) - Upwelling Phenomenon and Chemical Properties of Seawater in the Southwestern Coastal Area of Cheju Island (제주도 주변 용승역의 생물생태학적 기초연구 ( I )- 제주도 남서부 연안해역의 해수화학적 특성과 용승현상)

  • KANG Tae-Youn;CHOI Young-Chan;Go You-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.603-613
    • /
    • 1996
  • Hydrographic conditions (temperature, salinity, dissolved oxygen), nutrients, chlorophyll-a and suspended solid have been studied in the southwestern coastal area of Cheju Island from April 1993 to March 1994. Vertical profile of temperature, salinity and chemical properties (nutrients, chlorophyll-a) distribution in th southwestern sea of Cheju Island showed a upwelling feature. Although it was not clear in winter season, it seems to continued through out the year. In the surface water at the upwelling areas, the ranges of dissolved oxygen, nitrate, phosphate and silicate was $3.30\~8.43\;ml/l,\;0\~7.12{\mu}g/l,\;0.03\~1.75{\mu}g-at/l\;and\;2.75\~22.32\;{\mu}g-at/l$l, respectively. Nutrients was higher in the shore water than in the offshore water, because sufficient supply of nutrients from the bottom water by coastal upwelling. In November, especially high concentration silicate was observed at all the stations and depth in the study area. At all station of bottom water (down to the depth of 60 meter), concentration value of dissolved of gen was as high as 8 ml/l. Mean values of N/P was 8.0, lower than Redifield ratio of 16. The mean values of Si/P was observed to 46.3 in southwest of Cheju Island. Concentration of chlorophyll-a was in the range of $0.04\~2.36\;{\mu}g/l$. Concentration of chlorophyll-a in surface orator at all station was especially higher in spring than in other seasons. Mean concentration value of suspended solids was 3.14 mg/l $(0.75\~8.47\;mg/l)$. Ratio of the volatile suspended solids to the suspended solids was higher in the inshore water $(53\%)$ than in the offshore water $(46\%)$, and higher in the surface water than in the bottom water.

  • PDF