• Title/Summary/Keyword: 산성 암맥

Search Result 32, Processing Time 0.017 seconds

Hydrothermal Antimony Deposits of the Hyundong Mine : Geochemical Study (현동 광산의 열수 안티모니 광화작용 : 지화학적 연구)

  • Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.435-444
    • /
    • 1999
  • The antimony deposits of the Hyundong mine, located in the northeastern part of the Sobaegsan massif, occur as hydrothermal quartz+carbonate veins and stockworks which fill the fault fractures developed in Precambrian metamOlphic rocks (mainly, granitic gneiss). Hydrothermal alteration occurs commonly in the vicinity of mineralized veins and is characterized by sericitization and silicification. A K-Ar age of alteration sericite is 139.2$\pm$ 4.4 Ma, implying the early Cretaceous age of mineralization, possibly in association with intrusion of nearby acidic dikes (mainly, quartz porphyry). The hydrothermal mineralization occurred in five mineralization stages. These are: (I) stage I, characterized by deposition of chalcedonic quartz; (2) stage II, deposition of quartz with base-metal sulfides and stibnite; (3) stage III, deposition of quartz and carbonates (calcite, dolomite, ankerite, rhodochrosite) with various antimony-bearing minerals such as stibnite, polybasite, berthierite, native antimony, gudmundite and ullmannite; (4) stage IV, deposition of calcite with stibnite; and (5) stage V, deposition of barren calcite. Antimony occurs mostly as stibnite within stages II to IV veins, which has various habits including disseminated, veinlets and euhedral coarse crystals. Fluid inclusion studies indicate that hydrothermal mineralization at Hyundong occurred from the fluids with temperature and salinity of $330^{\circ}$C to 120 and 5.3 wI. % equiv. NaCI. The temperature and salinity of ore fluids systematically decreased with elapsed time in the course of mineralization, possibly due to the influx of larger amounts of meteoric groundwater. The deposition of antimony-bearing minerals occurred at low temperatures «$250^{\circ}$C), mainly due to the cooling and dilution of fluids. Based on the evidence of fluid boiling during the early stage II mineralization, the mineralization occurred under low pressure conditions (about 80 bars, corresponding to depths of about 350 m under hydrostatic pressure regime). Thermodynamic considerations of ore . mineral assemblages indicate that antimony deposition also occurred as the results of decreases in temperature and sulfur fugacity of hydrothermal fluids. Calculated sulfur isotope composition of ore fluids ($\delta^{34}S_{\Sigma s}$=5.4 to 7.8$\textperthousand$) indicates an igneous source of sulfur.

  • PDF

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF