• Title/Summary/Keyword: 산성토양

Search Result 458, Processing Time 0.049 seconds

Determination of Soil Phosphorus and Zinc Interactions using Desorption Quantity-Intensity Relationships (탈착 유효량과 가용량의 연관성을 이용한 토양 인산과 아연의 상관 관계 측정)

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.59-65
    • /
    • 2004
  • Interactions of phosphorus and zinc in soils are important to determine the availability of the elements because those elements are closely related in the agricultural environment. The objective of this study was to investigate the interactions of P and Zn using desorption quantity (Q)-intensily(I) isotherms. Physically and chemically different soils, acidic Egan, acidic sandy Egeland, calcareous Glenham, and neutral Maddock, were used. The soils were enriched with different concentrations of P and Zn as $KH_2PO_4$ and $ZnSO_4$ solutions, respectively. Zinc enrichments affected availability of P in the Egan soil, which contained higher amounts of clay, organic matter, and exchangeable Fe than the other soils tested. After Zn enrichments, the pH drastically decreased in Egeland sandy soil, not changed in the calcarious Glenham soil, and slightly decreased in Egan and Maddock soil systems. The values of $Q_{max}$ and $I_0$ of phosphorus decreased with increasing Zn concentrations enriched in all soils, the changes of those values did not influence the P buffering power, |$BP_o$| values, in most soils. The influences of P treatment on Zn availability were varied. The values of Zn buffering capacity, $BC_{Zn}$, were lowest in the Egeland soil that had the lowest soil pH, amounts of clay minerals, organic matter, CEC, and exchangeable Fe, and were highest in the calcareous Glenham soil. The $BC_{Zn}$ values ranged from 202 to 4480. With P application, the changes of $BC_{Zn}$ values were more affected by the changes of soil solution Zn contents (I) than the changes of DTPA extractable Zn contents(Q). The change of Q and I values was found to be dependent upon soil properties, especially, soil pH.

매립지 근처에서 산성오염물로 인한 토양오염의 지연에 대한 수치적 연구

  • Yoon, Do-Yeong;Han, Chun;Kim, Min-Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.61-64
    • /
    • 1999
  • 산성침출수에 의한 광산폐기물 매립지 근처의 지하 환경의 오염 및 대처 방안의 효과를 수치적으로 예측하였다. 이를 위하여 지하토양에서 Darcy 법칙을 사용한 침출수의 흐름과 이산-분산에 의한 오염물질의 이동현상을 예측하기 위하여 Galerkin 유한요소법을 활용하였다. 토양오염의 지연을 위하여 석회석 차수막을 연직형과 수평형을 도입하여 그 효과를 조사하였다. 수평차수막에서의 수착이 오염물질의 이동을 지연시키는데 상당한 효과가 있는 것으로 나타났다. 반면에 연직차수막은 지하수의 우회유동으로 인한 오염물질의 확산이 가중되고 있는 것으로 예측되었다. 전반적으로 침출수의 흐름은 광산매립지 제방 근처에서 강하게 일어나는 것으로 나타났다. 이를 근거로 차수막의 효과적인 설치방안이 고안되어야 할 것으로 보인다.

  • PDF

Effects of Different Potassium Sources on the Ammonia Volatilization from Soils under Flooded Condition (가리(加里)의 시용(施用)이 담수토양(湛水土壤)에서 암모니아의 휘산(揮散)에 미치는 영향(影響))

  • Oh, Wang-Keun;Kim, Seong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 1981
  • The effects of potassium chloride and potassium sulphate on the volatilization of ammonia from acidic clayloam and tidal sandy clay loam soils applied with urea under flooded conditions were studied in a laboratory experiment. Results obtained were as follows; 1. The application of potassium to the acidic soil promoted the volatilization of ammonia through increasing soil pH. 2. The application of potassium to urea treated on the tidal soil which lead pH over 8.0 under flooded reduced conditions decreased the wet soil pH and reduced the volatilization of ammonia from the soil. These effects of potassium were more pronounced in the potassium sulphate treatment than in the potassium chloride. 3. More ammonia was volatilized from the acidic soil applied with potassium sulphate, however, the effects of potassium fertilizers applied to the high pH tidal soil seemed to be masked by high salt content of the soil. 4. Urea brought up soil pH significantly. Potassium sulphate was more effective than potassium chloride in raising pH of the acidic soil, though the reverse could be true in the tidal soil with high pH. The reduction of sulphate might be a major cause for the pH change.

  • PDF

Acid deposition in Chunchon : 1998-1999 (춘천지역 산성강하물의 실태(1998년-1999년))

  • 강미희;박기준;김만구
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.67-69
    • /
    • 1999
  • 산성물질들은 구름이나 안개가 생성될 때 내부로 녹아 들어가거나, 비가 내릴 때 녹아 들어가 구름, 안개, 비 중에 많은 양이 존재하며, 이 과정이 기체상 물질들이 대기 중에서 제거되는 주요한 과정이다. 구름이나 안개, 비 중에서 직접 산성오염물질이 생성되는 액상반응도 있고, 주로 아황산가스의 산화반응이 기여하고 있다고 알려져 있다(Hegg and Hobbs, 1978). 이렇게 생성된 대기 중 산성물질들은 대기에서 지표면으로 내려와 식물, 하천수, 호소수, 토양, 건축물 등에 영향을 준다.(중략)

  • PDF

Distribution of Acidic Deposition in korea peninsula (한반도 산성강하물 분포현황)

  • 한진석;박준대;공부주;정일록;정일웅;신선아;고준석
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.113-114
    • /
    • 2002
  • 대기중으로의 오염물질 배출량의 증가는 대기오염문제 뿐만 아니라 산성우 현상을 초래하게 된다. 산성우 현상은 발생과정에서부터 피해현상에 이르기까지 그 대상이 매우 광범위하고 광역적으로 나타나는 현상이기 때문에 산성우에 대한 문제는 범지구적인 환경문제로 다루어지고 있다. 우리나라에서는 아직 산성우로 인한 토양이나 수계 및 생태계 등에 대한 피해는 조사되지 않았으나 중국을 비롯한 주변국가들의 대기오염물질 배출량이 증가할 것이 예상되므로 장래 산성우에 의한 피해가 우려되며 향후 국가간의 환경분쟁에 대비하기 위해서도 산성우현상에 대한 조사연구가 필요하다. (중략)

  • PDF

Effects of Artificial Acin Rain on Seed Germination, Growth and Needle of Several Conifers(2) (인공산성우가 몇 침엽수종의 종자발아, 생장 및 침엽에 미치는 영향(2))

  • 김갑태;추갑철
    • Korean Journal of Environment and Ecology
    • /
    • v.7 no.1
    • /
    • pp.10-21
    • /
    • 1993
  • Artificial acid rain (pH 3.0, 4.0 and 5.0) and ground was treated on the seeded pots of 4 species to examine its effects on germination and survival rate, seedling growth and contact angles on needle surface. Artificial acid rain was prepared by diluting sulfuric acid with ground water and ground water (pH 6.5) was used as control. Artificial acid rain was sprayed to seeded pots two or three times per week for growing season, one times per week for winter seasons. About 5mm of artificial acid rain was treated each time from early April, 1991 to early October, 1993. Germination and survival rate, soil acidity, seedling growth and contact angles on the needle surface were measured and compared among the treatments. The results were summarized as follows ; Artificial acid rain might have positive effects on growth-related characteristics of the seedlings in the first and second year of acid rain treatment, and the effects were differed among four species. All growth-related characteristics of the seedlings in third year, however, decreased with decrease of pH values of artificial acid rain. This was considered to the results of acidic accumulation over soil buffer capacity. Needle injury and biomass (defoliation) was correlated with the pH values of artificial acid rain, and this character might be a good criteria for early diagnosis of acid rain injury. The differences of soil acidity were significant among the treatments for all species. Contact angles between needle surface and water droplet decreased with decrease of pH values of artificial acid rain. Measuring and comparing contact angles might be very good criteria for early diagnosis of acid rain injury.

  • PDF

Environmental Contamination from Acid Mine Drainage (산성광산배수로 인한 환경오염도 조사)

  • Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.143-150
    • /
    • 2007
  • AMD (Acid mine drainage) from disused mines is one or the most significant pollutant problems to make harmful effect to human health. We demonstrated the mechanism of resolution and adsorption reaction for arsenic, manganese and zink from the soil and mine tailings which were located in the vicinity of a disused mine in Kyoungnam area. The resolution experiments were carried with a column test f3r 45 days continuously. Metal chemical forms in water were changed with the condition of solution pH and ORP (oxidation-reduction potential). Metal chemical forms affected on the reaction of resolution and adsorption of metals in water environments. Even though the sampling was carried in very closed location, there was significant different results of pollution level and ORP changes in terms of column operations. Hence It was important to note the pH and ORP in AMD to evaluate a risk assessment and a soil management using monitoring metals. When we operate AMD management with the mechanism of resolution and adsorption it can be achieved better economic solution.