• Title/Summary/Keyword: 산사태 발생가능성

Search Result 88, Processing Time 0.024 seconds

Rainfall Analysis for Warning of Sedimentation Disaster in Mountaious Area (산지토사재해예보를 위한 강우분석)

  • Jun, Byong-Hee;Jun, Kye-Won;Jang, Chang-Deok;Oh, Chae-Yeon;Yoon, Ji-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.248-248
    • /
    • 2012
  • 산사태나 토석류와 같은 산지재해가 빈발하고 인명과 재산의 피해가 증가함에 따라 적절한 대책이 시급하게 요구되고 있다. 이런 대책 중에서 신뢰도 높은 산지재해 예, 경보시스템을 구축하는 것은 매우 중요하다. 산림청에서는 산사태 예, 경보 발령을 위한 기준을 마련하고 있으나, 좀더 신뢰도 높은 기준을 필요로 한다고 생각된다. 본 연구에서는 강우분석을 통해서 우리나라의 자연사면에서 토석류, 산사태를 일으키는 강우의 특성을 파악하고, 나아가 산지토사재해 예, 경보시스템에 적절하게 활용될 수 있는 기준을 마련하고자 하였다. 이를 위해서 회귀분석, 판별분석을 적용하여 평가하였고, 보다 개선된 기준으로서 토양우량지수를 제시하였다. 토양우량지수는 강우에 의해 지반이 어느 정도 포화되어 있는가를 계산하여, 토사재해발생의 위험성을 나타낸 것이다. 본 연구에서는 2001년에서 2009년 사이에 충북 제천시 일대의 강우자료를 조사하여 탱크모델에 적용하여 각 탱크에서의 저류량을 계산하여 토양우량지수를 결정하였다. 세 개의 탱크 중에서 두 번째 탱크에서의 저류량 (S2)과 전체 탱크에서의 저류량 (TS)을 이용하여 상위에 랭크된 이력순위를 분석한 결과, S2에서는 산사태가 발생한 2009년 이력이 3번째 높은 수준으로 기록되며, 산사태 미발생의 2007년 강우는 5번째로 기록되었다. 그리고 TS의 경우 2009년 강우가 2002년에 이어 3번째 높은 수준으로 기록되었으며, 2007년 강우는 9번째로 기록되었다. 이러한 결과를 볼 때 토양우량지수의 이력순위는 산지토사재해의 발생을 잘 반영하는 것으로 나타났다. 또한 2011년 발생한 우면산 산사태를 대상으로 토양우량지수를 적용하여 예, 경보시스템의 적용가능성을 판단하였다.

  • PDF

A Case Study on the Analysis of Cause and Characteristics of a Landslide at the Sedimentary Rock Area (퇴적암 지역에서의 산사태 원인 및 특성 분석에 대한 사례연구)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.101-113
    • /
    • 2007
  • A landslide was occurred due to soil cutting for construction to expand the Donghae express highway in Dong-hae-City, Korea. The total area of the landslide was about $9,550m^2$ with 100 m of width and 87m of height. The landslide was occurred due to the internal factor of the unstable geological structure including the clay layer and the external factor of continuous heavy rainfalls. As the result of field instrumentation during the landslide, the horizontal displacement of the slope ground increases with increasing the accumulated rainfall by continuous rainfall during the rainy season. Also, the depth of sliding failure was decided by the horizontal displacement distribution during landslide occurrence. It makes sure that the horizontal displacement starts from the depth of sliding failure and the depth of sliding failure matches well with the location of the clay layer. As the slope stability analysis using Bishop's Simplified Method at the landslide area, the safety factor of slope during the rainy season was 0.53. This safety factor of slope was enough to trigger the landslide at this area. The depth of sliding failure obtained by analytical method matches well with the depth of the clay layer.

Landslide Hazard Mapping and Verification Using Probability Rainfall and Artificial Neural Networks (미래 확률강우량 및 인공신경망을 이용한 산사태 위험도 분석 기법 개발 및 검증)

  • Lee, Moung-Jin;Lee, Sa-Ro;Jeon, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.57-70
    • /
    • 2012
  • The aim of this study is to analyse the landslide susceptibility and the future hazard in Inje, Korea using probability rainfalls and artificial neural network (ANN) environment based on geographic information system (GIS). Data for rainfall probability, topography, and geology were collected, processed, and compiled in a spatial database using GIS. Deokjeok-ri that had experienced 694 landslides by Typhoon Ewinia in 2006 was selected for analysis and verification. The 50% of landslide data were randomly selected to use as training data while the other 50% being used for verification. The probability of landslides for target years (1 year, 3 years, 10 years, 50 years, and 100 years) was calculated assuming that landslides are triggered by 1-day rainfall of 202 mm or 3-day cumulative rainfalls of 449 mm.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks(I) -Comparative Study of Groundwater Recharge- (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(I) -지하수 유입량의 비교 연구-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-102
    • /
    • 1992
  • Landslides on hillside slopes with shallow soil cover over a sloping bedrock are frequently caused by increases in porewater pressures following of heavy rainfall and it is one of the most important factors of assessing the risk of landslide to predict the groundwater level fluctuations in hillslopes. This paper presents the comparative study of three unsaturated flow models developed by Sloan et al., Reddi, L.N., and Thomas, H.A., Jr., respectively, which are used to predict the increase of groundwater levels in hillside slopes. The parametric study for each of models is also presented. The Kinematic Storage Model(KSM) developed by Sloan et at. is utilized to predict the saturated groundwater flow. They are applied to the two sites in Korea so as to examine the possibility of use in the groundwater flow model. The results show that two unsaturated models developed by Sloan et al. and Reddi, L. N. are largely affected by the uncertain parameters like saturated permeability and saturated water content : the abed model has the potential of use in unsaturated flow model with the optimal estimates of model parameters utilizing available optimization techniques. And it is also found that the KSM must be modified to account for the time delay effect in the saturated zone. The results of this paper are able to be utilized in developing the predictive model of groan dwater level fluctuations in a hillslope.

  • PDF

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

A Test for Characterization on Landslides Triggering and Flow Features of Debris using a Flume test Equipment (모형실험 장치를 이용한 산사태 발생 및 사태물질 거동특성 실험)

  • Chae Byung-Gon;Song Young-Suk;Seo Yong-Seok;Cho Yong-Chan;Kim Won-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.275-282
    • /
    • 2006
  • This study was conducted laboratory flume tests to identify landslide features and flow characteristics of debris using a flume test equipment. Under the several test conditions dependent on rainfall intensity and slope angle, the authors measured pore water pressure, slope failure and displacement, spreading area of debris on a regular time interval. The test processes were also recorded by video cameras and digital still cameras. According to the test results, pore water pressures have trends of direct proportion to the rainfall intensity and the slope angle, resulting in high potential of landslide triggering. The spreading area of debris is also increased with the slope angle and the rainfall intensity as well as the rainfall duration.

The Prediction of Hazard Area Using Raster Model (Raster 모델을 이용한 재해위험지 예측기법)

  • Kang, In-Joon;Choi, Chul-Ung;Cheong, Chang-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.43-53
    • /
    • 1994
  • GSIS(geo-spatial information system), particularly when utilized in hazard management decision, is one of hazard analysis tool. Data of GSIS input from digitizing or scanning of map or aerial photos. This paper focuses upon the hazard prediction in GSIS and RS analysis to assess map, aerialphotos, satellite imagery and soil map. This study found computation of hazard area analysis. the results is formed as raster data model of quadtree. Authors knew more accurate results of overlay. This paper shows building up integrated data base as well as search of hazard area in aerial photographs.

  • PDF

Detection of Landslide-damaged Areas Using Sentinel-2 Image and ISODATA (Sentinel-2 영상과 자기조직화 분류기법을 활용한 산사태 피해지 탐지 - 2020년 곡성 산사태를 사례로 -)

  • KIM, Dae-Sun;LEE, Yang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.253-265
    • /
    • 2020
  • As the risk of landslide is recently increasing due to the typhoons and localized heavy rains, effective techniques for the landslide damage detection are required to support the establishment of the recovery planning. This study describes the analysis of landslide-damaged areas using ISODATA(Iterative Self-Organizing Data Analysis Technique Algorithm) with Sentinel-2 image, regarding the case of Gokseong in August 7, 2020. A total of 4.75 ha of landslide-damaged areas was detected from the Sentinel-2 image using spectral characteristics of red, NIR(Near Infrared), and SWIR(Shortwave Infrared) bands. We made sure that the satellite remote sensing is an effective method to detect the landslide-damaged areas and support the establishment of the recovery planning, followed by the field surveys that require a lot of manpower and time. Also, this study can be used as a reference for the landslide management for the CAS500-1/2(Compact Advanced Satellite) scheduled to launch in 2021 and the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024.

Investigation of Soil Characteristics and Landslides Probability in East Island of Dok-Do (독도 동도지역의 토질특성 및 산사태가능성 조사)

  • Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.665-671
    • /
    • 2007
  • In this study, the soil characteristics and the landslide probability are investigated in East Island of Dok-do. The distribution and depth of soil layer were investigated and the soil samples were taken from the soil layer in East Island. As the results of field investigation, the soil layer was partly distributed in specific location and the soil depth was ranged from 1cm to 50cm. Also, the soil depth was mainly ranged about 10cm in the large part of soil layer. The soils were classed as the weathered residual soils and involved many organic contents such as rotten roots and leaves. The average of water contents is 23.2%, and the average of liquid limits is 42.2%. Also, the soils is non-plastic condition. Also, the soils were mainly classed as the poor graded sand including loam contents. Meanwhile, the landslide probability was investigated through a survey of the soil layer distribution in East Island. The soil depth was very shallow in the large part of the soil layer, and the distribution area of soil layer was small. Therefore, it may predict that the landslide probability is very low due to the dissatisfaction of landslide occurrence condition.

Development of Simulator for Rockfall and Landslide using Physical Engine (물리엔진을 사용한 낙석 및 산사태 시뮬레이터 개발)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.60-67
    • /
    • 2009
  • This paper describes a development of system that enables the user to simulate the rockfall and landslide from slopes using physical engine. Until now, it will not be able to accomplish the virtual experiment of three-dimensional interpretation about slope informations, stability evaluation, the rockfall and landslide simulation, etc., because of absence of three-dimensional simulation systems which relates with slopes. With like that reason, this paper developed a simulator which is identical or similar the rockfall and the landslide where the possibility which will occur or occurred from actuality is high very actual condition from virtual experiment. For a simulator development, this paper uses the physical engine which is mainly used from computer game and animation development etc., And it will be show the process where the rockfall and landslide occurs with simulator. This simulator which sees the process where the rockfall and the landslide occur from three-dimension computer graphics theory and the physical engine, is a system which is the possibility of showing actual feeling. Therefore, the result of this paper is applied in vehicle travelling guidance system and intelligence traffic systematic etc., because of creates visual service and three-dimensional application of the slope information database which is developed in existing, and will be able to forecast the upgrade of user benefit planning and a service.