• Title/Summary/Keyword: 산사태

Search Result 768, Processing Time 0.027 seconds

Analysis of Slope Stability Considering the Saturation Depth Ratio by Rainfall Infiltration in Unsaturated Soil (불포화토 내 강우침투에 따른 포화깊이비를 고려한 사면안정해석)

  • Chae, Byung-Gon;Park, Kyu-Bo;Park, Hyuck-Jin;Choi, Jung-Hae;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.343-351
    • /
    • 2012
  • This study proposes a modified equation to calculate the factor of safety for an infinite slope considering the saturation depth ratio as a new variable calculated from rainfall infiltration into unsaturated soil. For the proposed equation, this study introduces the concepts of the saturation depth ratio and subsurface flow depth. Analysis of the factor of safety for an infinite slope is conducted by the sequential calculation of the effective upslope contributing area, subsurface flow depth, and the saturation depth ratio based on quasi-dynamic wetness index theory. The calculation process makes it possible to understand changes in the factor of safety and the infiltration behavior of individual rainfall events. This study analyzes stability changes in an infinite slope, considering the saturation depth ratio of soil, based on the proposed equation and the results of soil column tests performed by Park et al. (2011 a). The analysis results show that changes in the factor of safety are dependent on the saturation depth ratio, which reflects the rainfall infiltration into unsaturated weathered gneiss soil. Under continuous rainfall with intensities of 20 and 50 mm/h, the time taken for the factor of safety to decrease to less than 1.3 was 2.86-5.38 hours and 1.34-2.92 hours, respectively; in the case of repeated rainfall events, the time taken was between 3.27 and 5.61 hours. The results demonstrate that it is possible to understand changes in the factor of safety for an infinite slope dependent on the saturation depth ratio.

Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test (불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.

Stability Analysis of the Unsaturated Infinite Slope Considering Suction Stress under Steady Infiltration Condition (정상침투조건에서 흡입응력을 고려한 불포화 무한사면의 안정해석)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.5-15
    • /
    • 2013
  • In this paper, the unsaturated slope stability analysis considering suction stress (Lu and Godt, 2008) was introduced and the results applied for a certain sand slope were analyzed. The unsaturated slope stability analysis considering suction stress can analyze both conditions of steady infiltration and no infiltration, and it can estimate the safety factor of slope as a function of soil depth. Also, the influence of weathering phenomenon at a certain depth from the ground surface can be considered. The stability analysis considering suction stress was applied to the unsaturated infinite slope composed of sand with the relative density of 60%. The suction stress under no infiltration condition was affected by ground water table until a certain influencing depth. However, the suction stress under steady infiltration condition was affected by seepage throughout the soils. Especially, the maximum suction stress was displayed around ground surface. The factor of safety in the infinite slope under no infiltration condition rapidly increased and decreased within the influence zone of ground water table. As a result of slope stability analysis, the factor of safety is less than 1 at the depth of 2.4 m below the ground surface. It means that the probability of slope failure is too high within the range of depths. The factor of safety under steady infiltration condition is greater than that under no infiltration condition due to the change of suction stress induced by seepage. As the steady infiltration rate of precipitation was getting closer to the saturated hydraulic conductivity, the factor of safety decreased. In case of the steady infiltration rate of precipitation with $-1.8{\times}10^{-3}cm/s$, the factor of safety is less than 1 at the depths between 0.2 m and 3 m below the ground surface. It means that the probability of slope failure is too high within the range of depths, and type of slope failure is likely to be shallow landslides.

A Study on the Damage of Pine Stand by Snowfall (항설(降雪)에 의(依)한 소나무 임분(林分)의 피해(被害)에 관(關)한 연구(硏究))

  • Ma, Ho Seop;Kang, Wee Pyeong;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.73 no.1
    • /
    • pp.63-69
    • /
    • 1986
  • In general, the snow injury in forestry is an unusual disaster. The degree of snow injury varies greatly depending on stand density and the local topography. This study was conducted to investigate the snow injury in analyzing the demaged by snow-fall in Jinju, Gyeongsangnamdo. The results obtained were summarized as follow; Among 466 total damaged trees, 425 trees were broken and 41 trees were uprooted, the ratio of damage were 5.22%, 2.49%, 0.92% and 0.2% for Pinus densiflora, Pinus thunbergii, Pinus rigida, Alnus hirsuta respectively. The 95% of the damage trees were in the range of 3 to 11 m for height and in the range of 3 to 20 cm for D. B. H.. The directions of the damage trees had a large influence by direction of the wind, but they shown at high tendency to aspect of the slope relatively. The 82% of the damaged trees ranged from 11 to 24 age. The ratio of broken height ($H_B/H$) indicated that the damage was most frequent in the part of stem as 24%, 45%, 31% in the part of the root collar (0.1), stem (0.2-0.4), crown (0.5-1.0) respectively. In general, trees with stem-form coefficient ($H_B/D$) over 0.7-0.8 are apt to suffer by snow damage. The average of stem-form coefficient of trees in this area was 1.06. Therefore, the ratio of damage was high tendency as 3.14%. These results indicate that it is necessary to apply pertinent tending which will increase in resistance of snow damage. As avalanches from the flank of soil erosion rise in an importance matter in present, it should also be considered to measures for prevention and restoration.

  • PDF

Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery (고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측)

  • Lee, Won-Jin;Sun, Jongsun;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee;Oh, Kwan-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1479-1488
    • /
    • 2018
  • On September 3rd 2017, strong artificial seismic signals from North Korea were detected in KMA (Korea Meteorological Administration) seismic network. The location of the epicenter was estimated to be Punggye-ri nuclear test site and it was the most powerful to date. The event was not studied well due to accessibility and geodetic measurements. Therefore, we used remote sensing data to analyze surface changes around Mt. Mantap area. First of all, we tried to detect surface deformation using InSAR method with Advanced Land Observation Satellite-2 (ALOS-2). Even though ALOS-2 data used L-band long wavelength, it was not working well for this particular case because of decorrelation on interferogram. The main reason would be large deformation near the Mt. Mantap area. To overcome this limitation of decorrelation, we applied offset tracking method to measure deformation. However, this method is affected by window kernel size. So we applied various window sizes from 32 to 224 in 16 steps. We could retrieve 2D surface deformation of about 3 m in maximum in the west side of Mt. Mantap. Second, we used Pleiadas-A/B high resolution satellite optical images which were acquired before and after the 6th nuclear test. We detected widespread surface damage around the top of Mt. Mantap such as landslide and suspected collapse area. This phenomenon may be caused by a very strong underground nuclear explosion test. High-resolution satellite images could be used to analyze non-accessible area.

A Study on Type Classification of Erosion Control Dam using Ecosystem Connectivity (생태연결성을 고려한 사방댐 유형분류에 관한 연구)

  • Koo, Gil-Bon;Kim, Min-Sik;Kim, Chul;Yu, Seung-mun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.483-493
    • /
    • 2011
  • Erosion control dams play a primary role in preventing or controlling natural disasters (landslide and debris flow etc.) and also conserve ecosystem in forested watersheds. This study examines structural characteristics of the dams such as the height of ecosystem control and the ecosystem permeability of the erosion control dams under standard drawings and the existing construction works. The objective of this study was to characterize the type classification of erosion control dams as ecosystem. Average permeability was highest on eco-piller dam (63.0%), followed in increasing order by wire rope (13.9%), silt dam (10.9%), multifunctional dam (7.2%), and gravity dam (0.4%). The height of ecosystem control was highest on gravity dam (3.2 m), followed in increasing order by multifunctional dam (1.7 m), wire rope dam (1.2 m), silt dam (0.6 m), and eco-piller dam (0.0 m). Criteria for defining the height of ecosystem control was indefinite. We grouped erosion control dams into three functional types (eco-connection, eco-semi connection, and eco-disconnection) by considering physical and structural characteristics such as the ecosystem permeability and the height of ecosystem control. The type of eco-connection (permeability > 20%) had connection areas from streambed to adjacent riparian areas, and these connection areas serve as ecosystem corridors for fauna and flora. Typical wildlife species includes mammals, reptiles, amphibians, and fishes. The type of eco-semi connection (5% < permeability < 20%) had < 2 m in the eco-barrier height from streambed, however, this type of dams partially serve as wildlife corridors and often provide fish ways. The type of eco-disconnection (permeability < 5%) had > 2 m in the eco-barrier height from streambed, thereby preventing wildlife movement.

Analysis of Quarrying and Restoration Characteristics on Quarry in Korea (국내 토석사업장의 토석채취 및 복구특성 분석)

  • Park, Jae-Hyeon;Kim, Ki-Dae;Kang, Min-Jeng
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.223-230
    • /
    • 2016
  • This study was carried out to investigate the quarrying and restoration characteristics on quarry in Korea. We researched quarrying and restoration status, analyzed the relationship between restoration area and permitted period, permitted area, quarrying volume, pit slope width, height, and berm width from 55 quarry sites. Most of the quarries were located in the following conditions : mixed forest, average altitude of less than 300 m, average mountain slope of $61^{\circ}$<, hillside, granite and landslide hazard class. Major quarrying characteristics were permitted period of 6~10 years, permitted area of less than 10 ha, quarrying volume of less than $1,000,000m^3$, a stone type of aggregate, a quarrying type of terrace, pit slope of $61^{\circ}$< Most quarries were restored by themselves, and the main restoration type was slope greening. Also, area ratio of flatland, pit slope, and berm was 54.9:39.6:5.5. Ccorrelation analysis showed that quarrying area was positively correlate with quarrying volume (${\alpha}=0.01$), permitted area, pit width, and pit height (a=0.05).