• Title/Summary/Keyword: 산림형

Search Result 624, Processing Time 0.022 seconds

A Morphological Study of Bamboos by Vascular Bundle Sheath (대나무류(類)의 유관속초(維管束鞘)에 의(依)한 형태학적(形態學的) 연구(硏究))

  • Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.25 no.1
    • /
    • pp.13-47
    • /
    • 1975
  • Among the many species of bamboo, it is well known that the dwarf-type is widely distributed in the tropical regions, and the slender type in temperated zone. In the temperated zone the trees have extensively differentiated into one hundred species in 50 genera. In many oriental countries, the bamboo wood is being used as a material for construction and for the manufacture of technical instruments. The bamboo shoot is also regarded as a good and delicious edible resource. Moreover, recent medical investigation verifies that the sap of certain species of the bamboo is an antibiotic effect against cancer. Fortunately, it is very easy to propagate the bamboo trees by using cutting from southeastern Asian countries. This important resource can further be used as a significant source of pulp, which is becoming increasingly important. The classification system of this significant resource has not been completely established to date, even though its importance has been emphasized. Initiated by Canlevon Linne in the 18th century, a classification method concerning the morphological characteristics of flowers was the first step in developing a classification. But it was not an easy task to accomplish, because this type of classification system is based on the sexual organs in bamboo trees. Because the bamboo has a long life cycle of 60-120 years and classification according to this method was very difficult as the materials for the classification are not abundant and some species have changed, even though many references related to the morphological classification of bamboo trees are available nowadays. So, the certification of bamboo trees according to the morphological classification system is not reasonable for us. Consequently, the classification system of bamboo trees on the basis of endomorphological characteristics was initiated by Chinese-born Liese. And classification method based on the morphological characteristics of the vascular bundle was developed by Grosser. These classification methods are fundamentally related to Holltum's classification method, which stressed the morphology of the ovary. The author investigated to re-establish a new classification method based on the vascular sheath. Twenty-six species in 11 genera which originated from Formosa where used in the study. The results obtained from the investigation were somewhat coordinated with those of Crosser. Many difficulties were found in distinguishing the species of Bambusa and Dendrocalamus. These two species were critically differentiated under the new classification system, which is based on the existence of a separated vascular bundle sheath in the bamboo. According to these results, it is recommended that Babusa divided into two groups by placing it into either subspecies or the lower categories. This recommendation is supported by the observation that the evolutional pattern of the bamboo thunk which is from outward to inward. It is also supported by the viewpoint that the fundamental hypothesis in evolution is from simple to complex. There remained many problems to be solved through more critical examination by comparing the results to those of the classification based on the sexual organs method. The author observed the figure of the cross-sectional area of vascular trunk of bamboo tree and compared the results with those of Grosser and Liese, i.e. A, $B_1$, $B_2$, C, and D groups in classification. Group A and $B_2$ were in accordance with the results of those scholars, while group D showed many differences, Grosser and Liese divided bamboo into "g" type and "h" type according to the vascular bundle type; and they included Dendrocalamus and Bambusa in Group D without considering the type of vascular bundle sheath. However, the results obtained by the author showed that Dendrocalamus and Bambusa are differentiated from each other. By considering another group, "i" identified according to the existence of separated vascular bundle sheath. Bambusa showed to have a separated vascular bundle sheath while Dendrocalamus does not have a separated vascular bundle sheath. Moreover, Bambusa showed peculiar characteristics in the figure of vascular development, i.e., one with an inward vascular bundle sheath and the other with a bivascular bundle sheath (inward and outward). In conclusion, the bamboo species used in this experiment were classified in group D, without any separated vascular bundle sheath, and in group E, with a vascular bundle sheath. Group E was divided into two groups, i.e., and group $E_1$, with bivascular sheath, and group $E_2$, with only an inward vascular sheath. Therefore, the Bambusa in group D as described by Grosser and Liese was included in group E. Dendrocalamus seemed to be the middle group between group $E_l$ and group $E_2$ under this classification system which is summarized as follows: Phyllostachys-type: Group A - Phyllostachys, Chymonobambus, Arundinaria, Pseudosasa, Pleioblastus, Yashania Pome-type: Group $B_2$ - Schizostachyum, Melocanna Hemp-type: Group D - Dendrocalamu Bambu-type: Group $E_1$ - Bambusa ghi.

  • PDF

Analysis of the Planting and Use of Landscaping Plants - Focused on Weonju and Hoengseong - (조경식물의 식재와 이용 - 원주시와 횡성군을 중심으로 -)

  • Won, Jong-Hwa;Jeong, Jin-Hyung;Kim, Chang-Seop;Lee, Ki-Eui
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.34-58
    • /
    • 2005
  • This study was executed to find out how to improve the planting and use of landscaping plants in Weonju and Hoengseong. 1. The number of street trees were 22,068 and the species number were 10 species in Weonju in 2004. The major species of street trees were Ginkgo biloba(58%), Prunus sargentii(15%), Zelkova serrata(9%), Prunus armeniaca var. ansu(8%), and Acer palmatum(6%). The ratio of native species versus exotic were 50:50. In Hoengseong, the number of street trees was 13,500 and the species number were 15 species. The major species of street trees were Prunus sargentii(42%), Ginkgo biloba(23%), Acer triflorum(12%), Prunus armeniaca var. ansu(6%), and Prunus mume(4%). The ratio of native species versus exotic were 67:33. The species of which planting frequency within two areas was very high were Ginkgo biloba and Prunus sargentii. 2. It is necessary to select tree species suitable for the characteristics of the locality and to raise distinctive street trees that contribute to the tourist industry. For the purpose, the appropriate street trees in two areas are Cornus controversa, Quercus aliena, Zelkova serrata, Prunus padus, Sorbus alnifolia, Sorbus comixta, Albizzia julibrissin, Acer triflorum, Styrax japonica, Chionanthus retusus, Celtis sinensis, Prunus yedoensis, Malus sieboldii, Crataegus Pinnatifida, Prunus armeniaca var. ansu and Pyrus pyrifolia etc.. 3. Appropriate pruning adds to the aesthetic and prolongs the useful life, it also requires less managing of insects and diseases to maintain good healthy of street trees. Street trees were not properly pruned due to electric lines and shortage of pruning information. The pruning was controlled by Korea Electric Power Co, which has no pruning information. Pruning must be maintained by a professional landscape company to maintain good shape such as with Bonsai. The shrubs planting zone between street trees and other trees, and preservation plates were established for healthy of street trees. They have to be repaired and maintained well to keep better environmental conditions. The proper fertilization, the control of pests and diseases, the installation of drainpipe and the use of soil brought from another place were needed to improve the planting, use and maintenance of landscape plants. 4. The species number of school trees and flowers of 102 schools in Weonju and Hoengseong were 17species, 16species respectively. The major species of school trees in Weonju were Juniperus chinensis(24%), Ginkgo biloba(17%), Pinus densiflora(14%), Zelkova serrata(14%), and Pinus koraiensis(9%), and those of school trees in Hoengseong were Pinus koraiensis(44%), Abies holophylla(25%), Juniperus chinensis(8%), and Ginkgo biloba(8%). The major species of school flowers in Weonju were Rosa centifolia(47%), Forsythia koreana(24%), Magnolia kobus(12%), and Rhododendron schlippenbachii(6%), and those of school flowers in Hoengseong were Forsythia koreana(36%), Rhododendron schlippenbachii(33%), Magnolia kobus(6%) and Dicentra spectabilis(6%). 5. The species number of the protection trees designated by Woenju and Hoengseong were 15 species. The major species of protection trees were Zelkova serrata(100 trees), Ginkgo biloba(18) Pinus densiflora(7), Quercus spp. (5), Juniperus chinensis(4) and Alnus japonica(4). 6. The landscape plants planted around 2004 in weonju were Prunus yedoensis(2,563 trees), Betula platyphylla var. japonica(2,000), Abies holophylla(1,785), Diospyros kaki(1,100), Prunus sargentii(880) and Prunus armeniaca var. ansu(708) etc.. The shrubs planted were Rhododendron obutusum(21,559 plants), Rosa centifolia (7,150), Rhododendron yedoense var. poukhanense(5,950), Forsythia koreana(3,000) and Ligustrum obtusi[olium(2,500) etc.. The landscape plants planted in Hoengseong Acer triflorum(928trees), Prunus yedoensis(455), Zelkova serrata(327), Thuja orientalis(261), Prunus sargentii(257), Pinus koraiensis(200), Prunus persica for. rubro-plena(200) and Pyrus pyrifolia (200) etc.. The shrubs planted were Rhododendron yedoense var. poukhanense(15,936), Syringa dilatata(10,090), Forsythia koreana(9,660), Cercis chinensis(3,200), Buxus microphylla var. koreana(2,600) and Rosa centifolia(1,868) etc.. 7. The species numbers of the herbaceous plants planted in 2004 in Weonju were 24 species and the ratio of native species versus exotic were 7:17. The major species of perennial plants were Aster koraiensis(30,656 plants), Coreopsis drummondii(7,656), Rudbeckia bicolor(6,000), Chrysanthemum morifolium(4,850) and Chrysanthemum zawadskii var. latilobum(4,312). The major species of annuals and biennials were Cosmos bipinnatus(672,000 plants), Zinnia elegans(35,600), Petunia hybrida(26,920), Viola tricolor(23,000), Helianthus annuus(17,000), and Geranium cinereum var. pubcaulescens(5,200). In Hoengseong, the numbers of herbaceous plants were 906,310 plants and the species numbers were 15 species. The major species of perennials plants were Aster koraiensis(70,480 plants), Hemerocallis fulva(20,070), and Phlox drummondii(18,000). The major species of annuals and biennials were Phlox hybrida(174,000 plants), Cosmos bipinnatus(125,000), Zinnia elegans(109,000), Tagetes patula(96,700), Vinca rosea(89,000) and Calendula officinalis(70,000). 8. Through these result, it was thought that the diversification of planting species, the selection of plants suitable to each space and the generalization of use of native species were needed.

  • PDF

A Study on Forestation for Landscaping around the Lakes in the Upper Watersheds of North Han River (북한강상류수계(北漢江上流水系)의 호수단지주변삼림(湖水団地周辺森林)의 풍경적시업(風景的施業)에 관(関)한 연구(硏究))

  • Ho, Ul Yeong
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.1-24
    • /
    • 1981
  • Kangweon-Do is rich in sightseeing resources. There are three sightseeing areas;first, mountain area including Seolak and Ohdae National Parks, and chiak Provincial Park; second eastern coastal area; third lake area including the watersheds of North Han River. In this paper, several methods of forestation were studied for landscaping the North Han River watersheds centering around Chounchon. In Chunchon lake complex, there are four lakes; Uiam, Chunchon, Soyang and Paro from down to upper stream. The total surface area of the above four lakes is $14.4km^2$ the total pondage of them 4,155 million $m^3$, the total generation of electric power of them 410 thousand Kw, and the total forest area bordering on them $1,208km^2$. The bordering forest consists of planned management forest ($745km^2$) and non-planned management forest ($463km^2$). The latter is divided into green belt zone, natural conservation area, and protection forest. The forest in green belt amounts to $177km^2$ and centers around the 10km radios from Chunchon. The forest in natural conservation area amounts to $165km^2$, which is established within 2km sight range from the Soyang-lake sides. Protection forest surrounding the lakes is $121km^2$ There are many scenic places, recreation gardens, cultural goods and ruins in this lake complex, which are the same good tourist resources as lakes and forest. The forest encirelng the lakes has the poor average growing stock of $15m^3/ha$, because 70% of the forest consists of the young plantation of 1 to 2 age class. The ration of the needle-leaved forest, the broad-leaved forest and the mixed forest in 35:37:28. From the standpoint of ownership, the forest consists of national forest (36%), provincial forest (14%), Gun forest (5%) and private forest(45%). The greater part of the forest soil, originated from granite and gneiss, is much liable to weathering. Because the surface soil is mostly sterile, the fertilization for improving the soil quality is strongly urged. Considering the above-mentioned, the forestation methods for improving landscape of the North Han River Watersheds are suggested as follows: 1) The mature-stage forest should be induced by means of fertilizing and tendering, as the forest in this area is the young plantation with poor soil. 2) The bare land should be afforested by planting the rapid growing species, such as rigida pine, alder, and etc. 3) The bare land in the canyon with moderate moist and comparatively rich soil should be planted with Korean-pine, larch, ro fir. 4) Japaness-pine stand should be changed into Korean-pine, fir, spruce or hemlock stand from ravine to top gradually, because the Japanese-pine has poor capacity of water conservation and great liability to pine gall midge. 5) Present hard-wood forest, consisting of miscellaneous trees comparatively less valuable from the point of wood quality and scenerity, should be change into oak, maple, fraxinus-rhynchophylla, birch or juglan stand which is comparatively more valuable. 6) In the mountain foot within the sight-range, stands should be established with such species as cherry, weeping willow, white poplar, machilus, maiden-hair tree, juniper, chestnut or apricot. 7) The regeneration of some broad-leaved forests should be induced to the middle forest type, leading to the harmonious arrangement of the two storied forest and the coppice. 8) For the preservation of scenery, the reproduction of the soft-wood forest should be done under the selection method or the shelter-wood system. 9) Mixed forest should be regenerated under the middle forest system with upper needle-leaved forest and lower broad-leaved forest. In brief, the nature's mysteriousness should be conserved by combining the womanly elegance of the lakes and the manly grandeur of the forest.

  • PDF

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF