• Title/Summary/Keyword: 산림토양

Search Result 946, Processing Time 0.03 seconds

Isotope Ratio of Mineral N in Pinus Densiflora Forest Soils in Rural and Industrial Areas: Potential Indicator of Atmospheric N Deposition and Soil N Loss (질소공급, 고추의 생육 및 수량에 대한 녹비작물 환원 효과)

  • Kwak, Jin-Hyeob;Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Lee, Kye-Han;Han, Gwang-Hyun;Ro, Hee-Myong;Lee, Sang-Mo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Deposition of atmospheric N that is depleted in $^{15}N$ has shown to decrease N isotope ratio ($^{15}N/^{14}N$,expressed as ${\delta}^{15}N$) of forest samples such as tree rings, foliage, and total soil-N. However, its effect on ${\delta}^{15}N$ of mineral soil-N which is biologically active N pool has never been tested. In this study, ${\delta}^{15}N$ of mineral N($NH{_4}^+$ and $NO_3{^-}$) in forest soils from organic and two depths of mineral soil layers (0 to 20 cm and 20 to 40cm depth) of Pinus densiflora stands located at two distinct areas (rural and industrial areas) in southern Korea was analyzed to investigate if there is any difference in ${\delta}^{15}N$ of mineral N between these areas. We also evaluated potential N loss of the study sites using ${\delta}^{15}N$ of mineral N. Across the soil layers, the ${\delta}^{15}N$ of $NH{_4}^+$ ranged from +8.9 to +24.8‰ in the rural area and from +4.4 to +13.8‰ in the industrial area. Soils from organic layer (+4.4‰) and mineral layer between 0 and 20 cm (+13.8‰) of industrial area showed significantly lower ${\delta}^{15}N$ of $NH{_4}^+$ than those of rural area (+8.9 and +24.3‰, respectively), probably indicating the greater contribution of $^{15}N$-depleted $NH{_4}^+$ from atmospheric deposition to forest in the industrial area than in the rural area. Meanwhile, ${\delta}^{15}N$ of $NO_3{^-}$ was not different between the rural and industrial areas, probably because ${\delta}^{15}N$ of $NO_3{^-}$ is more likely to be altered by the N loss that causes $^{15}N$ enrichment of the remaining soil N pool. Compared with the ${\delta}^{15}N$ of soil mineral N reported by other studies (from -10.9 to +15.6‰ for $NH{_4}^+$ and -14.8 to +5.6‰ for $NO_3{^-}$), the ${\delta}^{15}N$ observed in our study was substantially high, suggesting that the study sites are more subject to the N loss. It was concluded that $NH{_4}^+$ rather than $NO_3{^-}$ can conserve the ${\delta}^{15}N$ signature of atmospheric N deposition in forest ecosystems.

Analysis of Water Use Strategies of Two Co-occurring Mature Tree Species, Pinus densiflora and Quercus serrata (생육공간을 공유하는 소나무와 졸참나무의 수분 이용 전략 비교 분석)

  • Lee, Kiwoong;Lee, Bora;Cho, NangHyun;Lim, Jong-Hwan;Kim, Eun-Sook
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.385-393
    • /
    • 2022
  • The study was carried out in Pocheon-si, Gyeonggi-do from March to December in 2019 to compare and analyze the water use strategies of two co-occurring tree species, Pinus densiflora and Quercus serrata, both native and dominant in Korea's forest ecosystems. Through seasonal changes, we measured environmental variables such as air temperature, relative humidity, precipitation, net radiation, and soil water content. Sap flow densities of P. densiflora (n = 6) and Q. serrata (n = 3) were measured, along with environmental variables. The maximum sa pflow density for Q. serrata almost doubled that of P. densiflora during the growing season, while the maximum sap flow densities in both Q. serrata and P. densiflora peaked in September and August, respectively. Net radiation and vapor pressure deficit, but not air temperature, were the major environmental variables significantly affecting sap flow density. Analysis of hysteresis revealed that P. densiflora exhibited isohydric behavior, while Q. serrata showed anisohydric behavior. Analysis of crown conductance revealed similar trends as sap flow density, i.e., the crown conductance of Q. serrata was twice that of P. densiflora during the growing period. The study compared and analyzed the water use strategies between two co-occurring species. To better understand the underlying mechanisms of water use, more research on both physiological and morphological traits are needed.

Analysis of Korea Soil Loss and Hazard Zone (한국토양유실량 및 토양유실위험 지역 분석)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Lee, Hyo-Jeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.261-268
    • /
    • 2009
  • This study accomplished to draw a soil erosion map and a grade map of soil loss hazard in Korea. RUSLE and Rainfall-runoff (R) factor, which was estimated by using the rainfall data observed in 59 meteorological stations from 1977 to 2006 (for 30 years). FARD was used to analyze the frequency, and the whole country R factor was estimated according to the frequency. In the analysis of estimating the whole country R factor, Nakdong river has the smallest vaule, but Han river has the biggest value. According to the result of analyzing soil loss, soil loss occurred in a grass land, a bare land and a field in size order, and also approximately 17.2 ton/ha soil loss happened on the whole area. The average soil loss amount by the unit area takes place in a bare land and a grass land a lot. The total amount of soil loss in 5-year-frequency rainfall yields 15,000 ton and, what is more, a lot of soil loss happens in a paddy field, a forest and a crop field. The grade map of soil loss hazard is drawn up by classifying soil loss hazard grade by 5. As a result of analyzing soil loss, the moderate area which is the soil loss hazard grade 2 takes up the largest part, 72.8% of the total soil loss hazard area, on the contrary, the severe soil loss hazard area takes up only $1,038km^2$ (1.1%) of the whole area. The severe soil loss hazard area by land cover shows $93.5km^2$ in a bare land, $168.1km^2$ in a grass land and $327.4km^2$ in a crop field respectively.

  • PDF

Effects of Hillslope Treatments for Vegetation Development and Soil Conservation in Burned Forests (산불 피해 산림의 식생 발달과 토양 보존을 위한 사면 처리 효과)

  • Kim, Chang-Gi;Choung, Yeon-Sook;Joo, Kwang-Yeong;Lee, Kyu-Song
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.295-303
    • /
    • 2006
  • Clear-cut followed by tree planting has been a conventional management practice in burned forests in Korea. Because this can considerably increase soil loss, hillslope treatments may be needed in order to improve soil stability at poorly regenerating areas. This paper reviews the effects of hillslope treatments, such as seeding, mulching and log erosion barriers, which have been applied to restore vegetation and conserve soil in burned forests in North America and Europe. Seeding has been the most common method for postfire restoration. However, the effects of seeding on vegetation cover and soil erosion are not clear and seeding with non-native species has been reported to inhibit regeneration of native vegetation. Mulching has been found to be effective at reducing soil erosion. However, this also can introduce non-native plant species and inhibit native plant regeration. Although studies on the effect of log erosion barriers are very few, it appears that log erosion barriers are effective in the period of little rainfall. Hillslope treatments for postfire restoration is not necessary for naturally regenerating areas and therefore, they should be restricted to the areas where regeneration potential is low and runoff and soil loss is considerable. Long-term monitoring is needed to assess the effectiveness of hillslope treatments on soil erosion, the introduction of non-native plant species and the inhibition of natural plant regeneration.

Short-term Effects of Warming and Precipitation Manipulation on Seasonal Changes in Fine Root Production and Mortality for Pinus densiflora Seedlings (인위적 온난화 및 강수 조절에 따른 소나무 묘목 세근 생산량과 고사율의 계절적 변화)

  • Han, Seung Hyun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • This study was conducted to investigate the effects of warming and precipitation manipulation on seasonal changes in fine root production (FRP) and fine root mortality (FRM) of 33-month-old Pinus densiflora seedlings for two years. The seedlings in warmed plots were warmed with $3.0^{\circ}C$ higher using infrared heaters. The air temperature of warmed (TW) plots was set to increase by $3^{\circ}C$ compared to temperature control (TC) plots, and the three precipitation manipulation consisted of precipitation decrease (-30%; PD), precipitation increase (+30%; PI) and precipitation control (0%; PC). FRP ($mm\;mm^{-2}\;day^{-1}$) was significantly altered by only precipitation manipulation (PC: 3.57, PD: 4.59, PI: 3.02), while warming had no significant effect on the FRP and FRM. Meanwhile, interactions between warming and precipitation manipulation and seasonal changes had no significant effects on FRP and FRM. However, the influences of seasonal changes in soil temperature and soil moisture on FRP and FRM were different according to warming. In TW plots, FRP showed a positive relationship with soil temperature, and FRM showed a negative relationship with soil moisture. On the other hand, in the TC plots, FRP showed a positive relationship with soil moisture, and there were no relationships between FRM and soil temperature and moisture. These results indicate that the climate factors that affect FRP and FRM might vary as the warming progresses.

A Study on Nitrogen Forms in Forest Soils (삼림토양(森林土壤)의 질소(窒素)의 존재형태(存在形態)에 관(關)한 연구(硏究))

  • Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.3
    • /
    • pp.246-253
    • /
    • 1993
  • The composition of the nitrogen forms of the organic layer and mineral soil horizons of 8 differing soil type was measured to find a clue to elucidate the problem on the fertility and nitrogen availabilities of forest soils. The ratio of inorganic $N(NH_4-N+NO_3-N)$ to total N was very low in every 0 layer and its maximum was only about 2%. And the inorganic N concentration of every mineral soil horizon was low, and the maximum of its rate to N was 3.7% in surface horizon and about 4.1% in lower horizon. Organic N form of O layer were characterized by the decrease of aminoacid-N, and the increased of hexosamine-N and amide-N according to the advance of decomposing process. The ranges of hydrolyzable-N of every flesh litter, F and H layer of the selected soils were about 80-90% and they- were hardly affected by the differences of tree species and decomposing process. The organic N form of every litter was similar and it was follows : aminoacid-N was not abundant and it ranges were about 40-50%, more than half of hydrolyzable-N. The hexosamine-N was eery poor and it ranged to only 2-7%. The amide-N teas low and about 10-23%. No distinguished difference was seen between the organic N forms of the O layer and surface horizon of dry and wet soils in brown forest soils.

  • PDF

Heavy Metal Concentrations in Tree Ring Layer and Soil and Tree Ring Growth of Roadside Trees in Seoul (서울시 가로수의 연륜층 및 식재주변 토양의 증금속 농도와 연륜 생장)

  • Yoo, Jae-Yun;Son, Yo-Whan
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.118-123
    • /
    • 2003
  • This study was carried out to examine the heavy metal concentrations in soils under roadside trees and tree ring layers, and to investigate the relationship between heavy metal concentrations and tree ring growth of roadside trees in Seoul. Soil samples at $0{\sim}20\;cm$ depth and tree line were collected from Platanus occidentalis and Ginkgo biloba at nine streets, and pH and heavy Metal concentrations were analyzed. Soil pH ranged from 6.62 to 8.01 and soil heavy metal concentrations under roadside trees were higher (Zn 109.03, Pb 26.49 and Cu 44.98 mg/kg) compared with those of the referred forest soils. Soils at Cheonggye2ga street showed the highest heavy metal concentrations, and seemed to be related to heavy traffic and dense hardware stores. Tree ring width significantly decreased from 1979 through 2000 for both species. There were positive correlations between Cr, Pb and Cu concentrations in soils and tree ring layers for P. occidentalis and Ni for G. biloba. However, there were negative correlations between Cr concentration in tree ring layers and tree ring width for P. occidentalis, and Ni and Cu for G. biloba. Also there were no significant correlations between climatic factors in Seoul and tree ring width.

Effects of Simulated Acid Rain on Growth and Contents of Chemical Substances in Needles of Pinus koraiensis Seedlings and on Chemical Properties of the Tested Soil (인공산성우(人工酸性雨)가 잣나무 유묘(幼苗)의 생장(生長), 엽내함유성분(葉內含有成分) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Cheong, Yong Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • Simulated acid rain (pH 4.0, pH 2.0) containing sulfuric and nitric acid in the ratio of 60:40 (chemical equivalent basis) diluted with underground water, and underground water (pH 6.5) as control were treated on potted Pines koraiensis seeds during the growing season (May 1 to August 31) in 1985. The regime of artificial acid rain, in terms of spray frequency and amount per plot, was simulated on the basis of climatological data averaged for 30 years of records. The seedling growth, contents of chemical substances in needles and chemical properties of the tested soil were compared among the various pH levels of acid rain on October 31, 1985. Following results were obtained. 1. With decreasing pH levels of acid rain, S and $K_2O$ contents in leaf tissue were increased, but MgO and $P_2O_5$ contents were decreased. 2. Soil pH was dropped, and exchangeable aluminum content in the tested soil was dramatically increased as the pH levels of acid rain decreased. 3. Exchangeable calcium, magnesium, potassium contents, and base saturation degree of the soil were significantly decreased with decreasing pH levels of acid rain. 4. Sulfate concentrations in the soil were significantly increased as rain pH decreased, but total nitrogen and available phosphate contents were not influenced by acid rain.

  • PDF

Vegetation-Environment Relationships in Forest Community of Ulleung Island (울릉도 삼림식생과 환경과의 상관관계)

  • So, Soon-Ku;Kim, Mu-Yeol;Park, Jong-Min;Lee, Sang-Hwa;Park, Gwan-Soo;Song, Ho-Kyung
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.1
    • /
    • pp.82-92
    • /
    • 2007
  • The purposes of this study were to classify community and to analyzse vegetation-environment relationships in the forest community of Ulleung Island. The forest community of Ulleung Island was classified into Pinus thunbergii community, Pinus densiflora community, Neolitsea sericea community, Pinus parviflora community, and Fagus multinervis - Sorbus commixta community. Since the results of phytosociological community classification were consistent with that of TWINSPAN, it proved that these two methods could complement when one does a community classification. There was a difference in chemical characteristic of soil among study communities. The community had high soil organic matter, total nitrogen, available phosphorous, and cation exchange capacity compared to forest soil of Korea. The soil pH ranged from 4.66 to 5.80. The soil texture in the study communities was loam or sandy loam. According to the ordination analysis, elevation, exchangeable Na, K, Ca, Mg, soil pH, and content of sand and silt affect the distribution of community.

Effect of Location Environments on Early Growth of Wild-simulated Ginseng (Panax ginseng C. A. Meyer) Seedlings in Larix kaempferi and Mixed Forest (일본잎갈나무림과 침활혼효림의 입지환경이 산양삼 종묘의 초기 생육에 미치는 영향)

  • Kim, Kiyoon;Um, Yurry;Jeong, Dae-Hui;Eo, Hyun-Ji;Jeon, Kwon-Seok;Kim, Hyun-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.3
    • /
    • pp.313-324
    • /
    • 2020
  • This study investigated the environmental location effects that Larix kaempferi and mixed forests had on the early growth of wild-simulated ginseng (Panax ginseng C. A. Meyer) seedlings. Experimental plots were created in Larix kaempferi and mixed forests, and confirmed the location environments and growth characteristics of wild-simulated ginseng seedling. Our results showed that the soil properties, such as soil organic matter, total nitrogen, and cation exchangeable capacity were significantly higher in the mixed forest soil compared to the Larix kaempferi forest soil. Likewise, the growth characteristics of wild-simulated ginseng seedlings were significantly higher in mixed forestsd compare to the Larix kaempferi forest. Correlation analysis between tree species ratio, soil properties, and growth characteristics in the experimental plots determined that the soil properties and growth characteristics had significant positive correlation with the broad-leaved forest percentage. Growth characteristics of the wild-simulated ginseng seedlings were shown to have a significant positive correlation with organic matter, total nitrogen, and cation exchange capacities. This study has clearly demonstrated that the tree species ratio, and soil properties in Larix kaempferi and mixed forests were significantly correlated with the early growth of wild simulated ginseng seedlings. These results could help to improve the selection of suitable cultivation sites for wild-simulated ginseng.