• Title/Summary/Keyword: 산기장치

Search Result 32, Processing Time 0.017 seconds

Rietveld Structure Refinement of Biotite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 흑운모의 Rietveld Structure Refinement)

  • 전철민;김신애;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • The crystal structure of biotite-1M from Bancroft, Ontario, was determined by Rietveld refinement method using high-resolution neutron powder diffraction data at -26.3$^{\circ}C$, 2$0^{\circ}C$, 30$0^{\circ}C$, $600^{\circ}C$, 90$0^{\circ}C$. The crystal structure has been refined to a R sub(B) of 5.06%-11.9% and S (Goodness of fitness) of 2.97-3.94. The expansion rate of a, b, c unit cell dimensions with elevated temperature linearly increase to $600^{\circ}C$. The expansivity of the c dimension is $1.61{\times}10^{40}C^{-1}$, while $2.73{\times}10^{50}C^{-1}$ and $5.71{\times}10^{-50}C^{-1}$ for the a and b dimensions, respectively. Thus, the volume increase of the unit cell is dominated by expansion of the c axis as increasing temperature. In contrast to the trend, the expansivity of the dimensions is decreased at 90$0^{\circ}C$. It may be attributed to a change in cation size caused by dehydroxylation-oxidation of $Fe^{2+}$ to $Fe^{3+}$ in vacuum condition at such high temperature. The position of H-proton was determined by the refinement of diffraction pattern at low temperature (-2.63$^{\circ}C$). The position is 0.9103${\AA}$ from the O sub(4) location and located at atomic coordinates (x/a=0.138, y/b=0.5, z/c=0.305) with the OH vector almost normal to plane (001). According to the increase of the temperature, $\alpha$* (tetrahedral rotation angle), $t_{oct}$ (octahedral sheet thickness), mean distance increase except 90$0^{\circ}C$ data. But the trend is less clearly relative to unit cell dimension expansion because the expansion is dominant to the interlayer. Also, ${\Psi}$ (octahedral flattening angle) shows no trends as increasing temperature and it may be because the octahedron (M1, M2) is substituted by Mg and Fe.

  • PDF

Characteristic of Mixing and DO Concentration Distribution in Aeration Tank by Microbubble Supply (마이크로버블 공급에 의한 폭기조내 교반과 용존산소 분포 특성)

  • Lim, Ji-young;Kim, Hyun-Sik;Park, Dae-Seok;Cho, Young-Gun;Song, Seung-Jun;Park, Soo-Young;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.251-259
    • /
    • 2016
  • This study examined the DO concentration distribution and ORP distribution using microbubbles on pilot-scale aeration tanks. As a result of MLSS mixing and oxygen transfer phenomenon using microbubbles, different DO concentrations were observed depending on the circulation of the liquid with the microbubble supply location on the lateral of an aeration tank. The simulation results of CFD (computational fluid dynamics) program showed that MLSS mixed with a microbubble supply in the middle the reactor is much better than on the left side of the reactor. A single reactor containing an anaerobic, anoxic, and aerobic zone, was evaluated without partition according to the location of the microbubble supply based on the experiments and CFD analysis. MLSS was separated into solid-liquid by the microbubble supply in the aeration tank. Consequently, selecting the appropriate microbubble size is important for MLSS mixing and was maintained at the proper DO concentration for biological treatment.