• Title/Summary/Keyword: 사회이슈

Search Result 1,281, Processing Time 0.034 seconds

Study on the Direction of Communication Design for Social Issue - Focusing on Gender Equality Storytelling - (사회적 이슈 커뮤니케이션 디자인 방향에 관한 연구 - 성평등 주제의 스토리텔링을 중심으로 -)

  • Moon, Da-Young;Kim, Boyeun
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.279-284
    • /
    • 2019
  • The purpose of this study is to investigate the direction of communication design through in-depth interviews on the topic of gender equality, which is an active theme of social issue happening worldwide, and to suggest a direction to provide better social issue communication direction. In order to do so, firstly, I researched case studies and investigated the characteristics of gender magazines such as If, Ferm and Womankind. Secondly, I conducted an empirical study of in-depth interviews to identify the emotional adjectives by women and men by different age groups from gender equality storytelling magazine experience. As a result, I was able to grasp two points necessary. First of all, for the gender equality content messages closely related to everyday stories level down the barrier and become easier to empathize with. Second of all, the more complex the social issues are, the more sustainable and credible if the content developed steadily and contingently. This study is meaningful in that it suggested a series of directions for communicating gender equality issues. Future research should complement the suggested directions for gender equality communication design and contribute to guiding further directions.

A Study on Risk Issues and Policy for Future Society of Digital Transformation: Focusing on Artificial Intelligence (디지털 전환의 미래사회 위험이슈 및 정책적 대응 방향: 인공지능을 중심으로)

  • Koo, Bonjin
    • Journal of Technology Innovation
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • Digital transformation refers to the economic and social effects of digitisation and digitalisation. Although digital transformation acts as a useful tool for economic/social development and enhancing the convenience of life, it can have negative effects (misuse of personal information, ethical problems, deepening social gaps, etc.). The government is actively establishing policies to promote digital transformation to secure competitiveness and technological hegemony, however, understanding of digital transformation-related risk issues and implementing policies to prevent them are relatively slow. Thus, this study systematically identifies risk issues of the future society that can be caused by digital transformation based on quantitative analysis of media articles big data through the Embedded Topic Modeling method. Specifically, first, detailed issues of negative effects of digital transformation in major countries were identified. Then detailed issues of negative effects of artificial intelligence in major countries and Korea were identified. Further, by synthesizing the results, future direction of the government's digital transformation policies for responding the negative effects was proposed. The policy implications are as follows. First, since the negative effects of digital transformation does not only affect technological fields but also affect the overall society, such as national security, social issues, and fairness issues. Therefore, the government should not only promote the positive functions of digital transformation, but also prepare policies to counter the negative functions of digital transformation. Second, the detailed issues of future social risks of digital transformation appear differently depending on contexts, so the government should establish a policy to respond to the negative effects of digital transformation in consideration of the national and social context. Third, the government should set a major direction for responding negative effects of digital transformation to minimize confusion among stakeholders, and prepare effective policy measures.

Technology Trends of Issue Detection and Predictive Analysis on Social Big Data (소셜 빅데이터 이슈 탐지 및 예측분석 기술 동향)

  • Lee, C.H.;Hur, J.;Oh, H.J.;Kim, H.J.;Ryu, P.M.;Kim, H.K.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.1
    • /
    • pp.62-71
    • /
    • 2013
  • 최근 빅데이터 시대를 맞이하여 소셜미디어가 중요한 정보의 소통수단으로 급부상함에 따라 소셜웹 이슈 탐지 및 예측분석 기술이 큰 주목을 받고 있고, 기업 정부 등에서 정치/경제/사회문화적 이슈들에 대한 온라인 동향 분석 및 이슈 예측 기술의 수요가 급증하고 있다. 본고에서는 페이스북, 트위터 등의 소셜미디어에 대한 온라인 동향 분석 및 모니터링 기술 개발의 국내/국외 상용화 및 연구 현황을 소개한다. 또한, 사회적 동향을 분석해서 만들어진 예측모델에 기반해서 이슈의 향후 전개 과정에 대해 정량적으로 예측하는 기술 현황을 국내와 국외로 나누어 소개한다.

  • PDF

핫이슈 - '인쇄를 사랑하는 사람들 네모' 출범

  • Im, Nam-Suk
    • 프린팅코리아
    • /
    • v.11 no.9
    • /
    • pp.100-101
    • /
    • 2012
  • 대 중소기업 상생이 사회적 이슈가 되면서 대기업과 함께 중소기업이 '동반성장'해야 한다는 인식이 확산되고 있다. 남원호 서울인쇄조합 이사장은 '동반성장'의 하나로 서울형 사회적기업인 '인쇄를 사랑하는 사람들 네모(주)(이하네모)' 설립에 앞장섰다. 지난 8월 8일 서울인쇄센터 7층 강당에서 네모창립총회가 열렸다.

  • PDF

An Analysis of the Correlation Between Politicians Approval Rating and the Amount of Internet News Articles (정치인의 지지율과 인터넷 뉴스 기사량의 상관관계 분석)

  • Lee, Pil-Su;Lee, Yun-Jung;Woo, Gyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1770-1772
    • /
    • 2012
  • 현재 인터넷 공간은 사람들의 관심사나 사회적인 이슈들을 반영하고 있다. 사회적으로 어떤 사건이 발생하면 그 사건에 관한 뉴스 기사나 관련된 다양한 콘텐츠들이 생성되어 여러 사람들에게 소비되고 공유된다. 뿐만 아니라 이와는 반대로 인터넷 공간에서 사람들에게 많은 관심을 받거나 이슈가 된 사건이 사회적인 관심거리가 되기도 한다. 최근에는 인터넷 공간에서 발생하는 정보 검색이나 콘텐츠 생성 패턴을 분석하여 실제 사회에서의 이슈나 트렌드를 예측하려는 연구가 활발히 진행되고 있다. 이 논문에서는 인터넷을 기반으로 분석한 자료와 전문 기관에서 분석한 자료의 상관관계를 분석하고자 한다. 그 중 최근 뉴스나 콘텐츠가 많이 생산되는 2012년 대통령 선거 후보에 관한 인터넷 뉴스 기사량과 전문조사 기관에서 발표한 각 후보의 지지율을 보이고 두 자료 간의 상관관계를 분석한다. 그리고 실험 결과로 대선 후보들의 기사 점유율과 발표된 지지율에 높은 상관관계가 있음을 보인다.

An Exploratory Study on Local Community Food Issues in the Context of COVID-19: Focusing on Social Big Data through Regional Issues (코로나19 상황에서 지역사회 먹을거리 이슈에 관한 탐색적 연구: 지역별 이슈를 통한 소셜 빅데이터를 중심으로)

  • Choi, Hong-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.546-558
    • /
    • 2021
  • This study focused on analyzing the contents of social big data produced in the online space, dealing with issues related to food in the community in the context of COVID-19. First, this study analyzed food-related issues that spread through regional websites and online community(cafes) after social distancing was implemented due to COVID-19. Next, this study analyzed the contents of food-related issues that spread through media news, SNS, and portals. As a result, there were more food-related posts on the homepages of other regions compared to the metropolitan areas such as Seoul and Gyeonggi, but in the case of online communities, there were more food-related issues in online communities registered in Seoul and Gyeonggi regions. Food-related keywords in regional online communities mainly contained content related to the local economy. In the media articles, SNS, and search portal issues, content that can be discussed in the consumption process of local community food-related policies, information, and products mainly appeared. Based on the results of the study, it was found that there is no specialized information sharing system for each community, that online communities can contribute to providing food information applicable to reality, and that it is possible to verify the performance of regional food policies through social media.

Social Issue Risk Type Classification based on Social Bigdata (소셜 빅데이터 기반 사회적 이슈 리스크 유형 분류)

  • Oh, Hyo-Jung;An, Seung-Kwon;Kim, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.1-9
    • /
    • 2016
  • In accordance with the increased political and social utilization of social media, demands on online trend analysis and monitoring technologies based on social bigdata are also increasing rapidly. In this paper, we define 'risk' as issues which have probability of turn to negative public opinion among big social issues and classify their types in details. To define risk types, we conduct a complete survey on news documents and analyzed characteristics according to issue domains. We also investigate cross-medias analysis to find out how different public media and personalized social media. At the result, we define 58 risk types for 6 domains and developed automatic classification model based on machine learning algorithm. Based on empirical experiments, we prove the possibility of automatic detection for social issue risk in social media.

Social Issue Analysis Based on Sentiment of Twitter Users (트위터 사용자들의 감성을 이용한 사회적 이슈 분석)

  • Kim, Hannah;Jeong, Young-Seob
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.81-91
    • /
    • 2019
  • Recently, social network service (SNS) is actively used by public. Among them, Twitter has a lot of tweets including sentiment and it is convenient to collect data through open Aplication Programming Interface (API). In this paper, we analyze social issues and suggest the possibility of using them in marketing through sentimental information of users. In this paper, we collect twitter text about social issues and classify as positive or negative by sentiment classifier to provide qualitative analysis. We provide a quantitative analysis by analyzing the correlation between the number of like and retweet of each tweet. As a result of the qualitative analysis, we suggest solutions to attract the interest of the public or consumers. As a result of the quantitative analysis, we conclude that the positive tweet should be brief to attract the users' attention on the Twitter. As future work, we will continue to analyze various social issues.