For analyzing big data, the social network is increasingly being utilized through relational data, which means the connection characteristics between entities such as people and objects. When the relational data does not exist directly, a social network can be configured by calculating relational data such as attribute similarity from attribute data of entities and using it as links. In this paper, the composition method of the social network using the attribute similarity between entities as a connection relationship, and the clustering method using subgroups for the configured social network are suggested, and the clustering effectiveness of the clustering results is evaluated. The analysis results can vary depending on the type and characteristics of the data to be analyzed, the type of attribute similarity selected, and the criterion value. In addition, the clustering effectiveness may not be consistent depending on the its evaluation method. Therefore, selections and experiments are necessary for better analysis results. Since the analysis results may be different depending on the type and characteristics of the analysis target, options for clustering, etc., there is a limitation. In addition, for performance evaluation of clustering, a study is needed to compare the method of this paper with the conventional method such as k-means.
A technology can be newly formed through technological convergence achieved by the intersection of two or more technological fields. As the complexity of technology development increases, related interest is increasing. Researches have been carried out on the concept, related indicators and analysis of technology convergence including method of social networks. This paper intends to suggest an analysis method of technology convergence using social networks based on the company's possessing technologies. According to the similarity of technologies among companies, a social network was constructed and the technology convergence was analyzed using k-core, a social network subgroup method. Using the result of k-core, base and element technologies for convergence was identified with their relations. Using the suggested method, technology convergence was analyzed on real technology data of defense-industry companies. When the minimum technology similarity is 0, the overall technology convergence relations between technology elements can be identified. In the scope of data in this paper, technologies of defense S/W, aircraft structure and structural materials are identified as important base technology for convergence.
개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.
콜센터 성과평가 및 인적자원 관리는 상담원의 개인적, 사회적 특성을 고려하지 않고 해결 콜 수에만 의존적으로 평가되고 있다. 그러나 콜센터는 대부분 업무가 고객과의 공동 문제해결에 기반하고 있어 상담원의 개인적 역량 및 사회적 역량이 업무성과에 직접적인 영향을 미친다. 따라서 본 연구는 콜센터 상담원을 대상으로 개인적 역량 및 조직 내 사회적 특성이 업무 성과에 미치는 영향을 분석함으로써 콜센터 성과평가 및 상담원의 채용관리에 도움을 주고자 한다. 이를 위해 본 연구는 RGT를 이용하여 개인적 특성을 도출하였고, 네트워크 분석을 통해 사회적 관계를 분석하였다. RGT와 네트워크 분석을 통해 도출된 변수를 바탕으로 회수실적과의 상관계수가 높은 항목을 선정한 후 회귀 분석을 실시하였다. 실험 결과, 회식망 내향 중앙성, 업무 적극성, 개방적 성향, 배우는 것을 즐기는 성향의 네 가지 특성이 회수실적에 유의미한 영향을 미치는 것으로 나타났다. 본 연구 결과는 콜센터 상담원 성과평가 뿐 아니라 상담원의 채용 및 관리에도 의미있는 정보를 제공할 수 있을 것으로 기대된다.
과학기술분야 국제협력은 국가 경쟁력 확보를 위해서 필수적이다. 한국은 과학기술의 인적 물적 자원의 한계를 극복하고자 연구의 국제화를 추진하고 있으며 최근 아시아 국가와 연구협력에서 높은 성장률을 보여주었다. 본 연구에서는 네트워크 분석을 이용하여 한국과의 공동연구가 크게 증가한 아시아 국가 간 공동연구 현황을 공저논문 수와 주제범주로 구분하여 실증적으로 파악하였다. 최근 5년간 아시아 국가 간 공저논문 수 기반 네트워크를 살펴보면, 일본, 중국, 한국 등 동북아시아 국가들이 네트워크 중심부에 있었으며 국가 상호 간 공동연구가 활발하게 이루어졌다. 또한 아시아 지역별로 공동연구의 주제범주를 분석한 결과, 동북아시아 지역은 기초과학 분야에서, 남부아시아, 동남아시아, 서남아시아 지역은 의학 분야에서 공동연구가 활발하게 이루어진 것으로 나타났다.
본 논문에서는 포털 사이트와 RISS에서 소셜 데이터와 학술 연구 데이터를 수집하고 TF-IDF, N-Gram, 의미 연결망 분석, CONCOR 분석을 실시하였다. 이를 통해 사회적 인식 양상과 현 상황을 파악하고, 시사점과 방향성을 제시하고자 하였다. 소셜 데이터에서 '인공지능 리터러시'보다 '인공지능 융합 교육'의 수집량이 2배 이상 많아 '인공지능 리터러시'에 관한 인식이 상대적으로 적은 것으로 나타났다. '인공지능 리터러시'에 소셜 데이터에서 '인간' 키워드는 소속된 군집이 없는 것으로 나타나 인문학 및 인공지능과 인간의 대한 철학적인 관심과 인식이 부족한 것으로 나타났다. 또한 '교육부' 키워드가 '인공지능 융합 교육'의 소셜 데이터에서만 빈도, 중요도, 연결 중심성이 모두 높게 나타나 '인공지능 융합 교육'이 정부의 정책과 관련 깊은 것이 확인되었다.
다매체, 다채널 시대, 기존의 방송망이 아닌 인터넷 망을 통해 디지털 디바이스를 이용한 동영상 시청이 새로운 방송 시청 행태로 급부상 하고 있다. 이러한 시청 행태 변화의 주요 서비스로 OTT 서비스가 주목 받고 있다. OTT 서비스란 인터넷 연결이 가능한 곳이면 끊어짐 없이(seamless) 자신이 원하는 콘텐츠를 원하는 시간에 다양한 단말기(any time, any device, any contents)로 이용 할 수 있는 동영상 서비스를 말한다. 본 연구는 OTT 서비스의 확산에 발맞춰 OTT 서비스의 만족도에 영향을 미치는 요인을 기술 수용 모델이론을 적용하여 탐색하고자 하였다. OTT 서비스 초기 이용자 303명의 설문조사를 통해 분석한 결과, 사회적 압력, 인지된 대중성, 인지된 비용, 이용자 평판, 개인의 혁신성, 심미성 등이 인지된 유용성, 인지된 용이성, 인지된 유희성에 부분적으로 영향을 미치고 있는 것으로 나타났다. 또한 유용성, 용이성, 유희성은 각각 만족도에 긍정적인 영향을 미쳤다. 이러한 결과를 바탕으로 이론적, 실무적 함의를 논의하고 향후 연구 과제를 제언하였다.
성공적인 학습 성과를 위해 동료 학습자간의 상호 협력 및 도움은 매우 중요한 요소이지만 학생들은 점점 혼자 해결하려는 경향이 나타나므로 학생들의 컴퓨터 문제해결 선호 방법 및 상호 관계성 등을 조사하여 이에 관한 학생들의 생각을 파악하고 학생들에게 알맞은 실습지도를 할 필요가 있다. 그러므로 본 논문에서는 K교육대학교 학생 231명을 대상으로 컴퓨터 사용 중 어려움을 겪을 때 선호하는 해결 방법 및 학생들 상호 관계성을 분석한 결과, 컴퓨터 사용 중 어려움 발생정도가 적을수록 컴퓨터 활용능력이 높을수록 학년이 올라갈수록 스스로 해결하는 방법을 선호하였다. 그리고 가족 및 친척 등 친밀도가 높은 혈연관계에게 직접 물어보는 방법과 인터넷을 활용하여 스스로 해결하는 방법에 만족도가 높았다. 또한, 학과동기생 사회연결망 분석을 통해 학과 안에서 컴퓨터 문제해결 관계망을 파악할 수 있어 동료 학습자 선정시 참고자료로 활용할 수 있으므로 개인별 맞춤형 컴퓨터 교육실습 운영에 도움을 줄 수 있을 것이다.
인터넷 기업의 영업 이익과 업무 효율성을 높이기 위해 개인정보를 이용한 업무 위탁행위가 증가되고 있다. 개인정보를 위탁받은 업체들에서 개인정보 노출 사고가 발생하는 경우 업무를 위탁한 기업들이 고스란히 피해를 입게 된다. 본 연구는 개인정보를 위탁받은 업체들의 업무 속성들을 분석하고 개인정보의 중요도에 따른 가중치를 적용하여 개인정보 노출 위험성이 높은 업체를 식별할 수 있는 모델을 제시하는데 목적이 있다. 이를 위해 개인정보 위탁관계, 개인정보 위탁서비스, 개인정보 이용항목들을 분석하고 사회연결망 분석과 군집분석을 활용하여 네트워크 중심성이 높은 업체 중 정보보호인증 획득이 필요한 업체를 식별하였다. 본 연구 결과는 개인정보를 이용하는 기업들을 관리하는 민간기업이나 공공기업의 정보보호 전략 수립에 활용될 수 있을 것이다.
본 연구에서는 학습주제의 연결망 구조와 스캔 및 클러스터 분석을 통해서 추출한 정보활용교육의 표준 학습주제를 가지고, 교과 교육과정과의 연계성을 갖춘 통합 정보활용교육과정을 개발하고자 하였다. 그리고 개발한 통합 정보활용교육과정의 실제 운영을 위한 교수-학습모형을 설계하였다. 본 연구에서는 정보활용교육과 교과 교육과정의 공통성 분석을 위해서 간학문적 성격을 갖는 정보활용교육의 학습주제를 분석기준으로 활용하였다. 공통성 분석결과 다음과 같은 특징을 발견하였다. 첫째, 제1학습주제(기초 학습기술과 인성 영역)가 속한 정보사회, 도서관, 정보기술, 협력기술 영역은 교과 교육과정과 연계성이 높게 나타났다. 둘째, 정보활용교육의 핵심 영역인 제2학습주제(정보문제 해결능력 영역)는 교과 연계성이 낮게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.