• Title/Summary/Keyword: 사출 압력

Search Result 125, Processing Time 0.024 seconds

Development of a cavity pressure measuring device and estimation of viscosity functions of various polymer composites (사출성형 금형 캐비티 내압 측정장치 개발 및 이를 이용한 새로운 복합재료의 점도 측정)

  • Kim, Yong-Hyeon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.877-887
    • /
    • 2015
  • We have proposed a new method for estimating the viscosity of the composite. In this paper, we have developed a device for measuring the injection mold cavity pressure. This makes it possible to verify the accuracy of the viscosity in CAE D/B in real time by measuring the melt pressure in the mold, and comparing this with the simulated pressure from the CAE analysis. Materials used in this study is a PP(Polypropylene), PP/LGF30%(Polypropylene/long glass fiber 50% composite) and PA66/LGF50%(Polyamide 6,6/long glass fiber 50% composite). The viscosity data for PP and PP long fiber composite have already been built, but the one for PA66 long-fiber composite does not exist because it is a newly developed material. Thus we obtained the viscosity curve of PA66/LGF50% by this system. Then, the viscosity curves from conventional viscometer were also compared with the viscosity obtained by the our method. And, we proved the accuracy of the CAE data of PP. In case of PP/LGF50% which is highly viscous and complex material, we improved the existing CAE data.because there was a difference between the measuring data and the CAE data.

A Study on the Relation between Cell morphology and Saturation condition in Gas-pellets MCPs (가스-펠릿 초미세 발포 사출 플라스틱 특성 연구)

  • Cha S. W.;Seo Jung-hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.87-92
    • /
    • 2005
  • In microcellular injection molding, gas supply system is needed. But, that device is very expensive to attach to the injection molding machines. So, new method is needed and gas-pellets MCPs is one of the solutions. In gas-pellets MCPs, there will be strange characteristics. In this paper, some characteristics are described on the view point of saturation pressure and saturation time.

Cornmeal Puffing with $CO_{2}$ Gas: Effect of Sucrose and Glyceryl Monostearate(GMS) ($CO_{2}$ 개스 주입에 의한 옥수수가루의 팽화: Sucrose와 Glyceryl Monostearate(GMS)의 영향)

  • Ryu, G.H.;Mulvaney, S.J.
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.251-256
    • /
    • 1995
  • Sucrose is added to feed materials to alter the taste and texture of extruded products. Emulsifier can affect extrudate properties by forming complexes with amylose during extrusion-cooking. These ingredients may improve the cell structure and texture of cornmeal extrudates obtained by using $CO_{2}$ as a bubble forming agent. The objective of this study was to evaluate effects of sucrose (5% and 10%) and glyceryl monostearate (GMS) (0.75% and 1%) on properties of cornmeal extrudates produced with $CO_{2}$ at injection pressures from 1.04 to 2.07 MPa. Dough temperature increased and die pressure decreased when $CO_{2}$ was injected into barrel. The addition of sucrose to cornmeal resulted in decreasing dough temperature, specific mechanical energy (SME) input, and die pressure. SME input was not significantly influenced by GMS addition but die pressure was decreased when GMS was added. Extrudate density was decreased over observed $CO_{2}$ injection compared to GMS. WSI was significantly decreased with the addition of GMS. Paste viscosity was also decreased with addition of sucrose or GMS, but significant differences of paste viscosity among $CO_{2}$ injection pressures were not found. Stucture forming and texture of cornmeal extrudates by $CO_{2}$ injection was improved by adding GMS.

  • PDF

신궁 추진기관 동적 시험 및 결과분석

  • 김준엽;김인식;한태균
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.13-13
    • /
    • 2000
  • 일반적으로 고체추진 로켓 모타의 개발단계 때 공통적으로 수행되는 주시험(main test)으로는 추력, 압력, 회전률 등의 성능측정을 하기 위한 정적연소시험(static firing test), 내부 정수압(hydrostatic pressure)에 의한 폭발 압력 시험, 연소중이나 연소 후 케이스에 대한 굽힘 강성 시험, 이외에 노화 시험, 환경시험 등이 요구된다. 그러나 신궁과 같은 휴대용 대공 시스템의 추진기관 개발의 경우에는 사수를 보호하기 위해 여러 가지 안전장치들이 설계되고, 이러한 장치들의 성능에 대한 요구 조건들을 확인하기 위한 특수시험(specific test)들이 필요하게 된다. 이러한 특수시험을 위한 각종 시험대들을, 위에서 언급한 주시험을 위해 사용되는 정적시험대(static test bench)들과 구분하기 위해 동적 시험대(DTB : Dynamic Test Bench)라고 한다. 본 연구에서는 신궁 추진기관의 사출모타 점화에서 비행모타 점화에 이르는 일련의 비행절차를 확인하기 위한 동적 시험대 설계 및 제작, 계측장치 구성 및 데이터 획득 방법 등에 관한 내용을 소개하며, 동적 시험대에서 수회에 걸쳐 수행된 동적 시험 결과를 분석/정리하였다.

  • PDF

A Study on the Bagley End Correction of PIM Feedstocks (분말사출재의 Bagley보정에 관한 연구)

  • 이병옥
    • The Korean Journal of Rheology
    • /
    • v.9 no.2
    • /
    • pp.73-80
    • /
    • 1997
  • 분말 입자 형태가 다른 2가지 스테인레스 강(SUS 316L)분말과 조성이 다른 2가지의 결합제를 이용하여 분말충전율의 변화를 가지도록 제조된 5가지 분말사출재에 대한 Bagley 보정 실험을 실시하여 Bagley 보정값에 대한 온도, 분말충전율, 분말 입자 형태 그리고 결 합제의 영향을 조사하였다. Bagley 보정값을 구하기 위한 자료 처리를 하는 과정에서 길이 가 긴 모세관(L/D=60) 의 압력손실이 Thixotropy에 의해서 감소한 현상을 발견하였다. 이는 모세관 점성측정기를 이용한 분말사출제의 점도 측정시 길이가 긴모세관의 사용이 바람직하 지 못하다는 것을 나타낸다. 분말사출재의 Bagley 보정값에 대한 온도와 결합제의 영향은 매우 미약하게 나타났는데 특히 결합제의 영향은 거의 나타나지 않는 것을 발견하였다. 분 말충전율과 분말 입자 형태의 Bagley 보정값에 대한 영향은 매우 크게 나타났으며 분말충 전율이 증가할수록 Bagley 보정값이 증가하고 분말 입자의 형태가 불규칙한 분말을 사용한 분말사출재의 보정값이 구형의 분말에 비해 높은 보정값을 나타냈다. 실험결과에 대한 고찰 결과, 분말사출재의 모세관 입출구에서 압력손실의 주 원인은 분말 이자간 마찰과 충돌이라 고 판단되었다.

  • PDF

Decrease of Burst Pressure used a Nozzle Closure and Ignition Characteristics for a Gas Generator (가스발생기용 노즐마개 파열압력 저감화에 따른 점화특성)

  • Cha, Hong-Seok;Oh, Seok-Jin;Park, Jae-Beom;Lee, Yeung-Jo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.217-220
    • /
    • 2010
  • This paper presents an achieving method of reducing maximum acceleration for the missile by decrease of burst pressure in a nozzle closure. The relation of notch shape and burst pressure for a nozzle closure is examined by experiment. In the point of maximum acceleration reduction for a missile, an improved nozzle closure effects well compared with that of a reference closure by ground burning test of a gas generator.

  • PDF

A Leak Inspection Automation System for Sealed SUS CAN Rotor (밀폐형 SUS CAN Rotor를 위한 Leak 검사 자동화 시스템)

  • Choi, Chang-min;Seo, Su-min;Shin, Gi-su;Park, Jong-won;Jung, Yeon-seok;Yoo, Nam-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.406-408
    • /
    • 2019
  • The motor applied to electric water pump used in automobiles is the canned type motor structure. The rotor, which is the driving component of the motor, is located in the bulkhead structure of the plastic injection molding, and rotates while immersed in the antifreeze. Plastic Injection Stator is placed on the outside of the bulkhead structure so that the rotor can rotate. The configuration of the rotor consists of magnet, core and shaft. In the case of magnet and core, it is very important to keep the parts sealed because it is a material that is corroded by moisture. When mounted on a vehicle, it must be capable of driving at $120^{\circ}C$ ambient conditions and should not leak under pressure of 1 bar or more. In this paper, we designed and implemented a Leak inspection automation system using helium to check the defects of the electric water pump developed satisfying this condition.

  • PDF

The Effects of Packing and Cooling Stages on the Molded Parts in Injection Molding Process (사출 성형시 보압 및 냉각 과정이 성형품에 미치는 영향)

  • 구본흥;신효철;이호상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1150-1160
    • /
    • 1993
  • The behavior of polystyrene in the strip cavity during the packing and cooling stages for an injection molding process is examined numerically. The mathematical model is based on the unified post-filling model and finite element/finite difference methods are used to solve simultaneously the continuity, momentum and energy equations coupled to an equation of state. Simulated results show that the density of the molded parts is lower in the core than at the skin, and that the hotter the melt or the higher the packing pressure, the higher the density in the core. The density variation during the packing stage comes up to 50% compared with the total density variation. Also, the density variation after gate sealing and the effect of cooling rate on the equation of state are negligible.

Cell morphology of microcellular foaming injection molding products with pressure drop rate (초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화)

  • 김학빈;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

Effects of Packing Parameter on Plastic Article Dimensions in the Plastic Injection Molding (사출성형 시 성형제품치수에 미치는 패킹변수의 영향)

  • Kim, Bum Joon;Shin, Ju Kyung;Lee, Jeong Goo;Sohn, Il Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • The molding process can be divided into five separate steps: plastification, injection, holding, cooling, and finally ejection. In the plastic injection molding, the effect factor such as mold temperature, injection speed, packing pressure and inhomogeneous cooling under packing process affects both the article dimension and physical characteristics. Especially, the packing pressure is the most critical factor to affect molded articles quality among the packing parameters. In this paper, the CAE simulation considering the molding condition is performed to predict the faulty cause which appears in the packing process between cavities of injection molding machine. From the results of CAE simulation, the packing phenomena according to the product form and the gate position was investigated to improve the article quality and minimize the various molding defects. The effect of packing pressure and gate number on the injection molding was discussed.