• Title/Summary/Keyword: 사출 금형

Search Result 623, Processing Time 0.023 seconds

The effect of mechanical properties of carbon-based thin film on plasma nitrided injection mold steel (플라즈마 질화처리한 사출금형소재의 비정질 탄소계 박막 증착에 따른 기계적 특성 향상 효과)

  • Hye-Min Kim;Dae-Wook Kim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.5
    • /
    • pp.328-334
    • /
    • 2023
  • The carbon-based films have various properties, which have been widely applied in industrial application. However, it has critical drawback for poor adhesion between films and metal substrate. In the present work, we have deposited carbon-based films on injection mold steel by plasma assisted chemical vapor deposition (PACVD). In order to improve adhesion, prior to film deposition, the substrate was nitriding-treated using PACVD. And its effect on the adhesion was investigated. Due to the pre-nitriding, the amorphous carbon nitride (a-CN:H) films presented 10 times higher adhesion (34.9 N) than that of un-nitirided. In addition, a friction coefficient was decreased from 0.29 to 0.15 for the amorphous carbon (a-C:H) due to improved adhesion. The obtained results demonstrated that pre-nitriding considerably improved the adhesion, and the relationship among adhesion, hardness, and surface roughness was discussed in detail.

Development of a injection molding automation system of busbar insert for the electric vehicle (전기 자동차 부스바 인서트 사출 자동화 시스템 개발)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.35-40
    • /
    • 2024
  • Injection molding is a process widely used across various industries for molding plastics, and it is the most commonly applied process in root industries utilizing molds. Among the different types of injection molding, insert injection molding, where busbars are used as inserts, is increasingly being applied in the electric vehicle industry. However, currently, the insert injection molding process is manually performed, with workers placing insert components by hand before injection molding. This results in issues related to productivity, safety, and quality. Additionally, there is a growing demand for automation of such production lines due to hazardous working conditions, economic difficulties in the manufacturing industry, and the decline in the labor force caused by an aging population. This study focuses on the application of an automated system for the insert injection molding process used in electric vehicles. The development of an automated system for the transport and insertion of insert components, as well as the inspection and stacking processes after injection, has resulted in over a 25% improvement in productivity and more than a 27% reduction in defect rates.

A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding (사출성형공정에서 금형에 전달되는 진동 신호 측정을 이용한 성형 단계별 공정시간과 공정특성의 모니터링에 대한 연구)

  • Lee, Jun-han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • In this study, the vibration signal of the mold was measured and analyzed to monitoring the process time and characteristics during injection molding. A 5 inch light guide plate mold was used to injection molding and the vibration signal was measured by MPU6050 acceleration sensor module attached the surface of fixed mold base. Conditions except for injection speed and packing pressure were set to the same value and the change of the vibration signal of the mold according to injection speed and packing pressure was analyzed. As a result, the vibration signal had a large change at three points: "Injection start", "V/P switchover", and "Packing end". The time difference between "injection start" and "V/P switchover" means the injection time in the injection molding process, and the time difference between "V/P switchover" and "Packing end" means the packing time. When the injection time and packing time obtained from the vibration signal of the mold are compared with the time recorded in the injection molding machine, the error of the injection time was 2.19±0.69% and the error of the packing time was 1.39±0.83%, which was the same level as the actual value. Additionally, the amplitude at the time of "injection start" increased as the injection speed increased. In "V/P switchover", the amplitude tended to be proportional to the pressure difference between the maximum injection pressure and the packing pressure and the amplitude at the "packing end" tended to the pressure difference between the packing pressure and the back pressure. Therefore, based on the result of this study, the injection time and packing time of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process variables such as the injection speed, maximum injection pressure, and packing pressure can be evaluated as the change of the mold vibration during injection molding.

Optimum Design of Rubber Injection Molding Process (고무사출성형의 적정설계)

  • Lee, Eun-Ju;Lim, Kwang-Hee;Giang, Vu Tai
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • The optimum mold design and the optimum process condition were constructed upon executing process simulation of rubber injection molding with the commercial CAE program of MOLDFLOW (Ver. 5.2) in order to solve the process-problems of K company relating to cracks, which occurs at the inner cavity wall of C. V. joint boots. As a result it was confirmed that the real cracks occurs at the exactly same position of the cavity as exhibits the defects of weld and meld line and unsatisfactory curing according to the result of simulation. In order to prevent the occurrence of weld and meld line at the defect-position, the location of gate was altered to the optimum position of the cavity. Consequently the filling pattern was established to minimize the degree of the melt-fronts confronting or the melt-flows melding to prevent the occurrence of weld and meld line at the defect-position. It was observed that both gate-positions to maximize the degree of the formation of weld and meld line and air traps are located, respectively, in opposite direction each other with reference to the optimum gate position. In addition, the temperature of mold was raised by $10^{\circ}C$ and maintained at $170^{\circ}C$ for satisfactory curing.

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 2. 결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • Injection molding process is a popular polymer processing involving plasticizing and enforcing the material flow into the mold. A polymer material shrinks according to temperature variations during the shaping process, and subsequently molding shrinkage developed. Developed deflections or warpages after molding process in part are caused by residual stress relaxation contained in the part. Adding inorganic materials or fibers such as glass and carbon to control shrinkage and enhance warpage resistance are common. In this study, warpages according to part design have been investigated through experiment. Warpages for molding conditions and mold designs such as gate locations were measured. Warpages along flow direction and perpendicular to the flow direction were also measured. Warpages near gate and far from gate were compared. Glass fiber reinforced crystalline polymers, PP and PA66 have been used in this experiment. Glass fiber reinforced crystalline polymers showed large warpage compared with glass reinforced amorphous polymers. Warpages in crystalline polymers were less influenced by molding conditions compared with amorphous polymers, however warpages of crystalline polymers significantly depend on part design.

A study on the process optimization of microcellular foaming injection molded air-conditioner drain pen (화학적 초미세 발포 사출성형을 이용한 에어컨 드레인 펜의 공정 최적화에 대한 연구)

  • Kim, Joo-Kwon;Kwak, Jae-Seob;Kim, Jun-Min;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, we applied microcellular foaming injection molding process to improve the performance of system air-conditioner drain fan which had been produced by injection molding process and studied the optimization of process conditions through 6-sigma process and response surface method (RSM) to reduce weight and deformation of products. Additive type, melt temperature, mold temperature, and injection screw shape were selected as the factor affecting the weight and deformation of the products by carrying out analysis of trivial many through ANOVA and design of experiment (DOE) method. Among the effect factor, we set the addictive type to Long G/F and screw shape to foaming screw which had the highest level of weight reduction and deformation reduction. The amount of foaming agent gas was set at 60 ml, which was the limit beyond which the weight of product did not decrease any more. For melt temperature and mold temperature, we studied the conditions where both weight and deformation were minimized using the RSM. As a result, we set the melt temperature to $250^{\circ}C$, fixed mold temperature to $20^{\circ}C$, and moving mold temperature to $40^{\circ}C$. The improvement effect was analyzed by appling the selected optimal conditions to the production process using the microcellular foaming injection molding. The results showed that the mean weight of product was measured to be 1,420g which was 19% lower than that measured in the current process. The standard deviations of the weights were found to be similar to those in the current process and it showed a low dispersion. The mean deformation was measured to be 0.9237mm, which represented a 57% reduction compared to the mean deformation in the current process, and the standard deviation decreased from 0.3298mm to 0.1398mm. Moreover, we analyzed the process capability for deformation, and the results showed that the short-term process capability increased from 2.73 to 6.60 which was even higher than targeted level of 6.0.

Development of Web-Based Platform System for Sharing Manufacturing Technologies on Housing Parts of Mobile Products (휴대폰 외장부품 제조기술 공유를 위한 웹기반 플랫폼 개발)

  • Jung, Tae Sung;Yoon, Gil Sang;Heo, Young Moo;Lee, Hyo Soo;Kang, Moon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.113-119
    • /
    • 2013
  • Despite rapid changes in the structure of industry, manufacturing remains a key industry for economic progress, promotion of trade, increased employment, and the creation of new industries. Production technologies are essential for strengthening the competitiveness of small- and medium-sized manufacturing industries. However, it is very difficult to standardize and systematically propagate production technology from an experienced worker to an inexperienced worker because these technologies are generally improved by the skilled people in a workshop. In this study, we introduce a Web-based platform system consisting of a knowledge authoring tool, technology database, semantic database, and Web portal service for sharing production technologies for the exterior housing parts of mobile products. By investigating various cellular phone designs, reference form factors for three types of mobile phone housings were designed based on the standard features. In addition, several manufacturing technologies and considerable information such as reference mold designs and molding conditions optimized using CAE and recent R&D outputs are stored in this system.

Development of Transplanting System for Plug Seedlings(I) - Development of Transplanting Mechanism using Vacuum Suction - (플러그묘 이식시스템 개발(I) - 진공흡인식 이식 메커니즘 개발 -)

  • Lee, Gong IN;Heo, Jeong Wook
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.128-128
    • /
    • 2017
  • 현재 식물공장에서 사용되고 있는 이식장치는 핀을 이용하여 육묘트레이 위에서 플러그묘를 뽑아 육묘트레이 또는 포트로 옮겨 심는 방식을 채택하고 있다. 이러한 이식 방식은 셀과 셀 사이에 있는 다른 묘의 잎을 파지함으로써 묘를 2개 이상 취출하는 현상이라든지 핀에 의한 잎 손상 등이 우려되고 있어 이에 대한 개선책이 필요하다. 본 연구는 플러그묘의 이식작업 시 잎 손상을 줄이면서 기계 적응성을 향상시킬 수 있는 이식시스템을 개발하기 위해 진공흡인을 이용한 이식 메커니즘에 대해 검토하였다. 플러그묘 이식시스템은 육묘트레이 셀을 X-Y로 옮기는 묘 이송부, 육묘트레이의 셀 하단으로부터 진공을 발생시켜 묘를 떨어뜨리는 진공 흡인부, 낙하되는 묘를 감지하는 센서와 블로워 및 공압 실린더로 구성된 진공 발생부, 혈공된 포트를 진공 발생부의 유도관으로 옮기는 포트 이송부 등으로 설계 제작하였다. 이식 메커니즘은 육묘트레이 하단부로부터 플러그묘를 1개씩 진공흡인하는 방식을 채택하였고, 이를 위해 상하 모두 개방된 72공 육묘트레이($L538{\times}W280{\times}H45mm$)를 윗부분(Ø35mm) 보다 아랫부분(Ø37mm)의 셀이 넓은 형상으로 PP재질의 육묘트레이를 사출금형 제작하였다. 묘 이송부에 장착된 플러그묘는 X축 방향(12개 셀)으로 이식작업이 이루어지고, Y축(6개 셀)으로 이동된 후 다시 동일한 방향으로 연속 작업이 가능하도록 제어프로그램을 구성하였다. 이식 원리는 진공 흡인부에 플러그묘가 이송되면 진공 발생부의 흡착패드가 위로 전진하여 진공을 발생시켜 묘를 흡인하고, 유도관 내에 부착된 광화이버센서에 의해 묘를 감지하여 블로워와 공압실린더를 제어함으로써 이식 공정이 끝나게 된다. 로메인상추의 플러그묘를 대상으로 진공흡인 시험을 실시한 결과 묘 손상없이 이식작업이 가능한 것으로 확인되었다.

  • PDF

Residual Vibration Control of High Speed Take-out Robot Used for Handling of Injection Mold Plastic Part (고속운동 플라스틱 금형사출 부품 취출 로봇의 잔류진동 제어)

  • Rhim, Sung-Soo;Park, Joo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1025-1031
    • /
    • 2011
  • Take-out robots used for handling of the plastic parts manufactured with the injection mold are usually the gantry type that consists of long and thin links, The performance of the take-out robot is determined by the speed of the motion and the positioning accuracy to grab the part out of the mold, As the speed of the robot increases the flexure in the links of the take-out robot becomes more significant and it results in more residual vibration, The residual vibration deteriorates the positioning accuracy and compels the operator to slow down the motion of the robot. The typical method to reduce the vibration in the robot requires stiffening the links and/or slowing down the robot, Vibration control could achieve the desired performance without increasing the manufacturing cost or the operation cost that would be incurred otherwise, Considering the point-to-point nature of the task to be performed by the take-out robot the time-delay command (or input) shaping filter approach would be the most effective control method to be adopted among a few available control schemes. In this paper a direct adaptive command shaping filter (ACSF) algorithm has been modified and applied to design the optimal command shaping filters for various configuration of the take-out robot. Optimal filters designed by ACSF algorithm have been implemented on a take-out robot and the effectiveness of the designed filters in terms of vibration suppression has been verified for multiple positions of the robot.

Development of a decision support system for high quality NC data selection in mold manufacturing (고품질의 사출금형 NC 가공 데이터 선정을 위한 의사결정지원시스템 개발)

  • Heo, Eun-Young;Kim, Bo-Hyun;Kim, Dong-Won;Cho, Min-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1101-1107
    • /
    • 2005
  • Mold industry has the difficulty to employ young people as the successors of the skilled workers, because it has been regarded as a 3D-jobs(dirty, difficult, and dangerous). To overcome this situation, thus, manufacturing technologies maintained in the factory should be systemized, and engineering systems should support unskilled workers to do their jobs without any difficulty. As a research of developing the supporting system, this study proposes a decision support system that facilitates unskilled workers to easily select high quality NC-data, as well as to increase productivity. The proposed system is assumed to follow a CAM operation scenario that consists of next three steps: 1) identifying several process plans and enumerating feasible unit machining operations (UMOs) from material and part surface information, 2) creating all feasible NC-data based on UMOs using a commercial CAM system, 3) selecting the best NC data among the feasible NC data using four screening criteria, such as machining accuracy, machining allowance, cutting load, and processing time. A case study on the machining of a camera core mold is provided to demonstrate the proposed system.

  • PDF