• Title/Summary/Keyword: 사전학습 모델

Search Result 663, Processing Time 0.032 seconds

Contrastive Learning of Sentence Embeddings utilizing Semantic Search through Re-Ranker of Cross-Encoder (문장 임베딩을 위한 Cross-Encoder의 Re-Ranker를 적용한 의미 검색 기반 대조적 학습)

  • Dongsuk Oh;Suwan Kim;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.473-476
    • /
    • 2022
  • 문장 임베딩은 문장의 의미를 고려하여 모델이 적절하게 의미적인 벡터 공간에 표상하는 것이다. 문장 임베딩을 위해 다양한 방법들이 제안되었지만, 최근 가장 높은 성능을 보이는 방법은 대조적 학습 방법이다. 대조적 학습을 이용한 문장 임베딩은 문장의 의미가 의미적으로 유사하면 가까운 공간에 배치하고, 그렇지 않으면 멀게 배치하도록 학습하는 방법이다. 이러한 대조적 학습은 비지도와 지도 학습 방법이 존재하는데, 본 논문에서는 효과적인 비지도 학습방법을 제안한다. 기존의 비지도 학습 방법은 문장 표현을 학습하는 언어모델이 자체적인 정보를 활용하여 문장의 의미를 구별한다. 그러나, 하나의 모델이 판단하는 정보로만 문장 표현을 학습하는 것은 편향적으로 학습될 수 있기 때문에 한계가 존재한다. 따라서 본 논문에서는 Cross-Encoder의 Re-Ranker를 통한 의미 검색으로부터 추천된 문장 쌍을 학습하여 기존 모델의 성능을 개선한다. 결과적으로, STS 테스크에서 베이스라인보다 2% 정도 더 높은 성능을 보여준다.

  • PDF

Learning Text Chunking Using Maximum Entropy Models (최대 엔트로피 모델을 이용한 텍스트 단위화 학습)

  • Park, Seong-Bae;Zhang, Byoung-Tak
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.130-137
    • /
    • 2001
  • 최대 엔트로피 모델(maximum entropy model)은 여러 가지 자연언어 문제를 학습하는데 성공적으로 적용되어 왔지만, 두 가지의 주요한 문제점을 가지고 있다. 그 첫번째 문제는 해당 언어에 대한 많은 사전 지식(prior knowledge)이 필요하다는 것이고, 두번째 문제는 계산량이 너무 많다는 것이다. 본 논문에서는 텍스트 단위화(text chunking)에 최대 엔트로피 모델을 적용하는 데 나타나는 이 문제점들을 해소하기 위해 새로운 방법을 제시한다. 사전 지식으로, 간단한 언어 모델로부터 쉽게 생성된 결정트리(decision tree)에서 자동적으로 만들어진 규칙을 사용한다. 따라서, 제시된 방법에서의 최대 엔트로피 모델은 결정트리를 보강하는 방법으로 간주될 수 있다. 계산론적 복잡도를 줄이기 위해서, 최대 엔트로피 모델을 학습할 때 일종의 능동 학습(active learning) 방법을 사용한다. 전체 학습 데이터가 아닌 일부분만을 사용함으로써 계산 비용은 크게 줄어 들 수 있다. 실험 결과, 제시된 방법으로 결정트리의 오류의 수가 반으로 줄었다. 대부분의 자연언어 데이터가 매우 불균형을 이루므로, 학습된 모델을 부스팅(boosting)으로 강화할 수 있다. 부스팅을 한 후 제시된 방법은 전문가에 의해 선택된 자질로 학습된 최대 엔트로피 모델보다 졸은 성능을 보이며 지금까지 보고된 기계 학습 알고리즘 중 가장 성능이 좋은 방법과 비슷한 성능을 보인다 텍스트 단위화가 일반적으로 전체 구문분석의 전 단계이고 이 단계에서의 오류가 다음 단계에서 복구될 수 없으므로 이 성능은 텍스트 단위화에서 매우 의미가 길다.

  • PDF

Effective Payload-based Anomaly Detection Method Using Pre-trained Model (사전학습 모델을 활용한 효과적인 Http Payload 이상 탐지 방법)

  • LEE, Unggi;KIM, Wonchul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.228-230
    • /
    • 2022
  • 딥러닝 기반의 인공지능 기술이 발달함에 따라 이상 탐지 방법에도 딥러닝이 적용되었다. 네트워크 트래픽으로부터 요약 및 집계된 Feature 를 학습하는 방법과 Packet 자체를 학습하는 등의 방법이 있었다. 그러나 모두 정보의 제한적으로 사용한다는 단점이 있었다. 본 연구에서는 Http Request에 대한 사전학습 기반의 효과적인 이상 탐지 방법을 제안한다. 사전학습에 고려되는 토큰화 방법, Padding 방법, Feature 결합 방법, Feature 선택 방법과 전이학습 시 Numerical 정보를 추가하는 방법을 소개하고 각 실험을 통해 최적의 방법을 제안한다.

A Study on Prompt-based Persona Dialogue Generation (Prompt를 활용한 페르소나 대화 생성 연구)

  • Yoona Jang;Kisu Yang;Hyeonseok Moon;Jaehyung Seo;Jungwoo Lim;Junyoung Son;Chanjun Park;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.77-81
    • /
    • 2022
  • 최근 사전학습 언어모델에 내재된 지식을 최대한으로 활용하고자 태스크에 대한 설명을 입력으로 주는 manual prompt tuning 방법과 자연어 대신 학습가능한 파라미터로 태스크에 대한 이해를 돕는 soft prompt tuning 방법론이 자연어처리 분야에서 활발히 연구가 진행되고 있다. 이에 본 연구에서는 페르소나 대화 생성 태스크에서 encoder-decoder 구조 기반의 사전학습 언어모델 BART를 활용하여 manual prompt tuning 및 soft prompt tuning 방법을 고안하고, 파인튜닝과의 성능을 비교한다. 전체 학습 데이터에 대한 실험 뿐 아니라, few-shot 세팅에서의 성능을 확인한다.

  • PDF

Character-Level Neural Machine Translation (문자 단위의 Neural Machine Translation)

  • Lee, Changki;Kim, Junseok;Lee, Hyoung-Gyu;Lee, Jaesong
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.115-118
    • /
    • 2015
  • Neural Machine Translation (NMT) 모델은 단일 신경망 구조만을 사용하는 End-to-end 방식의 기계번역 모델로, 기존의 Statistical Machine Translation (SMT) 모델에 비해서 높은 성능을 보이고, Feature Engineering이 필요 없으며, 번역 모델 및 언어 모델의 역할을 단일 신경망에서 수행하여 디코더의 구조가 간단하다는 장점이 있다. 그러나 NMT 모델은 출력 언어 사전(Target Vocabulary)의 크기에 비례해서 학습 및 디코딩의 속도가 느려지기 때문에 출력 언어 사전의 크기에 제한을 갖는다는 단점이 있다. 본 논문에서는 NMT 모델의 출력 언어 사전의 크기 제한 문제를 해결하기 위해서, 입력 언어는 단어 단위로 읽고(Encoding) 출력 언어를 문자(Character) 단위로 생성(Decoding)하는 방법을 제안한다. 출력 언어를 문자 단위로 생성하게 되면 NMT 모델의 출력 언어 사전에 모든 문자를 포함할 수 있게 되어 출력 언어의 Out-of-vocabulary(OOV) 문제가 사라지고 출력 언어의 사전 크기가 줄어들어 학습 및 디코딩 속도가 빨라지게 된다. 실험 결과, 본 논문에서 제안한 방법이 영어-일본어 및 한국어-일본어 기계번역에서 기존의 단어 단위의 NMT 모델보다 우수한 성능을 보였다.

  • PDF

Engineering a deep-generative model for lyric writing based upon a style transfer of song writers (심층생성모델 기반 가수 스타일 전이형 작사 모델 구현)

  • Hong, Hye-Jin;Kim, So-Hyeon;Lee, Jee Hang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.741-744
    • /
    • 2021
  • 본 논문은 사전 학습된 심층생성모델을 기반으로 가수 별 가사의 특성을 반영하여 새로운 가사를 생성하는 모델을 소개한다. 베이스 모델로 한국어 사전 학습 모델 KoGPT-2 를 사용하였으며, 총 가수 10 명의 노래 823 곡을 수집하여 미세조정 기법을 바탕으로 학습하였다. 특히, 가수 별로 구분한 가사를 학습 데이터로 구축하여, 가수 별로 독특하게 나타나는 가사 스타일이 전이되도록 하였다. 가수의 이름과 시작 단어를 입력으로 주고 작사를 수행한 실험 결과, (i) 가수 별로 생성되는 가사의 어휘와 스타일이 그 가수의 기존 곡들의 가사와 유사함을 확인하였고, (ii) 작사 결과 가수 별 차이를 확인하였다. 추후 설문을 통해, 개별 가수들의 가사와 생성된 가사의 어휘와 스타일 유사성을 확인하고, 가수 별 차이 또한 확인하고자 한다.

A Study on the Construction of an Emotion Corpus Using a Pre-trained Language Model (사전 학습 언어 모델을 활용한 감정 말뭉치 구축 연구 )

  • Yeonji Jang;Fei Li;Yejee Kang;Hyerin Kang;Seoyoon Park;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.238-244
    • /
    • 2022
  • 감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.

  • PDF

ColBERT with Adversarial Language Adaptation for Multilingual Information Retrieval (다국어 정보 검색을 위한 적대적 언어 적응을 활용한 ColBERT)

  • Jonghwi Kim;Yunsu Kim;Gary Geunbae Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.239-244
    • /
    • 2023
  • 신경망 기반의 다국어 및 교차 언어 정보 검색 모델은 타겟 언어로 된 학습 데이터가 필요하지만, 이는 고자원 언어에 치중되어있다. 본 논문에서는 이를 해결하기 위해 영어 학습 데이터와 한국어-영어 병렬 말뭉치만을 이용한 효과적인 다국어 정보 검색 모델 학습 방법을 제안한다. 언어 예측 태스크와 경사 반전 계층을 활용하여 인코더가 언어에 구애 받지 않는 벡터 표현을 생성하도록 학습 방법을 고안하였고, 이를 한국어가 포함된 다국어 정보 검색 벤치마크에 대해 실험하였다. 본 실험 결과 제안 방법이 다국어 사전학습 모델과 영어 데이터만을 이용한 베이스라인보다 높은 성능을 보임을 실험적으로 확인하였다. 또한 교차 언어 정보 검색 실험을 통해 현재 검색 모델이 언어 편향성을 가지고 있으며, 성능에 직접적인 영향을 미치는 것을 보였다.

  • PDF

딥러닝을 이용한 VTS 주의구역 선박교통류 예측 모델(STENet) 개발

  • Kim, Gwang-Il;Kim, Ju-Seong;Jeong, Cho-Yeong;Lee, Geon-Myeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.275-277
    • /
    • 2018
  • 선박 및 해상교통관제에 있어서 교통 혼잡구역에 대한 선박교통밀도 예측은 선박충돌사고 예방에 중요하다. 선박 교통밀도 예측정보는 사전에 진입하는 선박들에게 속력조정, 우회항로 이용 등 사전 조치가 가능하다. 본 연구에서는 해상 선박교통상황을 딥러닝 네트워크에 학습한 주의구역 선박교통류 예측 모델(Ship Traffic Extraction Network, STENet)을 제안하여 주의구역의 선박교통류 예측을 수행하고자 한다. STENet 모델 학습을 위해 여수해역 AIS 데이터를 전처리하고, 생성된 입력(해상교통상황)-출력(주의구역 교통밀도) 쌍 데이터를 적용하여 STENet 모델을 학습하였다. 학습된 모델을 이용하여 선박교통류 예측을 한 결과, 중기예측은 표준 절대 오차(mean absolute error)가 0.4-0.5척이 였으며, 장기예측은 0.7-0.8척의 오차로 기존의 Dead Reckoning에 의한 방법보다 50% 이상 교통밀도 예측성능이 향상 되었다.

  • PDF

Generating Literature-Style Sentences based on Summarized Text (요약문 기반 문학 스타일 문장 생성)

  • Bugwang Choe;Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.67-70
    • /
    • 2022
  • 최근 자연어 생성 연구는 딥러닝 기반의 사전 학습 모델을 중심으로 활발하게 연구되고 있다. 하위 분야 중 하나인 텍스트 확장은 입력 텍스트를 출력에 잘 반영하는 것이 무엇보다도 중요하다. 기존 한국어 기반 텍스트 확장 연구의 경우 몇 개의 개념 집합에 기반해 문장을 생성하도록 한다. 그러나 이는 사람의 실제 발화 길이에 비해 짧고 단순한 문장만을 생성한다는 문제점이 존재한다. 본 논문은 이러한 문제점을 개선하면서 문학 스타일의 문장들을 생성하는 모델을 제안하였다. 또한 동일 모델에 대해 학습 데이터의 양에 따른 성능도 비교하였다. 그 결과, 짧은 요약문을 통해 문학 스타일의 여러 문장들을 생성하는 것을 확인하였고, 학습 데이터를 추가한 모델이 성능이 더 높게 나타나는 것을 확인하였다.

  • PDF