• Title/Summary/Keyword: 사전학습 모델

Search Result 663, Processing Time 0.026 seconds

Application of transfer learning to develop radar-based rainfall prediction model with GAN(Generative Adversarial Network) for multiple dam domains (다중 댐 유역에 대한 강우예측모델 개발을 위한 전이학습 기법의 적용)

  • Choi, Suyeon;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.61-61
    • /
    • 2022
  • 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.

  • PDF

Design of Teaching-Learning Model for Programming Language Education using Advance Programming Assignment (사전 과제를 활용한 프로그래밍 언어 교수 학습 모델 설계)

  • Kim, Kyong-Ah;Ahn, You Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.327-328
    • /
    • 2016
  • 프로그래밍 교육은 프로그래밍에 필요한 지식 교육부분과 문제해결능력과 연관된 프로그래밍 전략을 교육하는 부분이 함께 필요하다. 프로그램 작성 기술을 교육하는 과정은 단순한 지식 습득과정이 아니므로 수업과정에서 학습자 스스로 문제해결능력을 배양할 수 있는 유도과정이 필요하다. 이러한 특성의 프로그래밍 수업의 대표적인 수업방식은 실습방식으로, 실제 수업에서 학습자들의 서로 다른 수준을 고려하면서 실습수업을 효과적으로 운영하기에는 수업시간에 대한 제약이 많이 발생한다. 본 연구에서는 프로그래밍 교육에서 사전 프로그래밍 과제를 활용하여 주어진 학점과 시간 안에서 실습 중심의 학습 효과를 높일 수 있는 교수 학습 모델을 제시한다. 이를 통해 프로그래밍 언어 교육 과정에서 발생하는 제한된 실습수업 시간으로 인해 학습자 스스로가 문제해결능력을 배양할 수 있도록 유도하는 수업을 실시하는데 발생하는 어려움을 해결하여, 학습자가 문제해결능력을 향상시키고 좋은 프로그램 작성 기준에 적합한 프로그램 개발 능력을 배양하는 결과를 얻을 수 있었다.

  • PDF

Recent Automatic Post Editing Research (최신 기계번역 사후 교정 연구)

  • Moon, Hyeonseok;Park, Chanjun;Eo, Sugyeong;Seo, Jaehyung;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.199-208
    • /
    • 2021
  • Automatic Post Editing(APE) is the study that automatically correcting errors included in the machine translated sentences. The goal of APE task is to generate error correcting models that improve translation quality, regardless of the translation system. For training these models, source sentence, machine translation, and post edit, which is manually edited by human translator, are utilized. Especially in the recent APE research, multilingual pretrained language models are being adopted, prior to the training by APE data. This study deals with multilingual pretrained language models adopted to the latest APE researches, and the specific application method for each APE study. Furthermore, based on the current research trend, we propose future research directions utilizing translation model or mBART model.

On the Effectiveness of the Special Token Cutoff Method for Korean Sentence Representation in Unsupervised Contrastive Learning (비지도 대조 학습에서 한국어 문장 표현을 위한 특수 토큰 컷오프 방법의 유효성 분석)

  • Myeongsoo Han;Yoo Hyun Jeong;Dong-Kyu Chae
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.491-496
    • /
    • 2023
  • 사전학습 언어모델을 개선하여 고품질의 문장 표현(sentence representation)을 도출하기 위한 다양한 대조 학습 방법에 대한 연구가 진행되고 있다. 그러나, 대부분의 대조학습 방법들은 문장 쌍의 관계만을 고려하며, 문장 간의 유사 정도를 파악하는데는 한계가 있어서 근본적인 대조 학습 목표를 저해하였다. 이에 최근 삼중항 손실 (triplet loss) 함수를 도입하여 문장의 상대적 유사성을 파악하여 대조학습의 성능을 개선한 연구들이 제안되었다. 그러나 많은 연구들이 영어를 기반으로한 사전학습 언어모델을 대상으로 하였으며, 한국어 기반의 비지도 대조학습에 대한 삼중항 손실 함수의 실효성 검증 및 분석은 여전히 부족한 실정이다. 본 논문에서는 이러한 방법론이 한국어 비지도 대조학습에서도 유효한지 면밀히 검증하였으며, 다양한 평가 지표를 통해 해당 방법론의 타당성을 확인하였다. 본 논문의 결과가 향후 한국어 문장 표현 연구 발전에 기여하기를 기대한다.

  • PDF

Self-learning Method Based Slot Correction for Spoken Dialog System (자기 학습 방법을 이용한 음성 대화 시스템의 슬롯 교정)

  • Choi, Taekyoon;Kim, Minkyoung;Lee, Injae;Lee, Jieun;Park, Kyuyon;Kim, Kyungduk;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.353-360
    • /
    • 2021
  • 음성 대화 시스템에서는 사용자가 잘못된 슬롯명을 말하거나 음성인식 오류가 발생해 사용자의 의도에 맞지 않는 응답을 하는 경우가 있다. 이러한 문제를 해결하고자 말뭉치나 사전 데이터를 활용한 질의 교정 방법들이 제안되지만, 이는 지속적으로 사람이 개입하여 데이터를 주입해야하는 한계가 있다. 본 논문에서는 축적된 로그 데이터를 활용하여 사람의 개입 없이 음악 재생에 필요한 슬롯을 교정하는 자기 학습(Self-learning) 기반의 모델을 제안한다. 이 모델은 사용자가 특정 음악을 재생하고자 유사한 질의를 반복하는 상황을 이용하여 비지도 학습 기반으로 학습하고 음악 재생에 실패한 슬롯을 교정한다. 그리고, 학습한 모델 결과의 정확도에 대한 불확실성을 해소하기 위해 질의 슬롯 관계 유사도 모델을 이용하여 교정 결과에 대한 검증을 하고 슬롯 교정 결과에 대한 안정성을 보장한다. 모델 학습을 위한 데이터셋은 사용자가 연속으로 질의한 세션 데이터로부터 추출하며, 음악 재생 슬롯 세션 데이터와 질의 슬롯 관계 유사도 데이터를 각각 구축하여 슬롯 교정 모델과 질의 슬롯 관계 유사도 모델을 학습한다. 교정된 슬롯을 분석한 결과 발음 정보가 유사한 슬롯 뿐만 아니라 의미적인 관계가 있는 슬롯으로도 교정하여 사전 기반 방식보다 다양한 유형의 교정이 가능한 것을 보였다. 3 개월 간 수집된 로그 데이터로 학습한 음악 재생 슬롯 교정 모델은 일주일 동안 반복한 고유 질의 기준, 음악 재생 실패의 12%를 개선하는 성능을 보였다.

  • PDF

A Noun Extractor based on Dictionaries and Heuristic Rules Obtained from Training Data (학습데이터를 이용하여 생성한 규칙과 사전을 이용한 명사 추출기)

  • Jang, Dong-Hyun;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.151-156
    • /
    • 1999
  • 텍스트로부터 명사를 추출하기 위해서 다양한 기법이 이용될 수 있는데, 본 논문에서는 학습 데이터를 이용하여 생성한 규칙과 사전을 이용하는 단순한 모델을 통해 명사를 효과적으로 추출할 수 있는 기법에 대하여 기술한다. 사용한 모델은 기본적으로 명사, 어미, 술어 사전을 사용하고 있으며 명사 추정은 학습 데이터를 통해 생성한 규칙을 통해 이루어진다. 제안한 방법은 복잡한 언어학적 분석 없이 명사 추정이 가능하며, 복합명사 사전을 이용하지 않고 복합 명사를 추정할 수 있는 장점을 지니고 있다. 또한, 명사추정의 주 요소인 규칙이나 사전 등록어의 추가, 갱신 등이 용이하며, 필요한 경우에는 특정 분야의 텍스트 분석을 위한 새로운 사전의 추가가 가능하다. 제안한 방법을 이용해 "제1회 형태소 분석기 및 품사 태거 평가대회(MATEC '99')"의 명사 추출기 분야에 참가하였으며, 본 논문에서는 성능평가 결과를 제시하고 평가결과에 대한 분석을 기술하고 있다. 또한, 현재의 평가기준 중에서 적합하지 않은 부분을 규정하고 이를 기준으로 삼아 자체적으로 재평가한 평가결과를 제시하였다.

  • PDF

A Study on Fine-Tuning and Transfer Learning to Construct Binary Sentiment Classification Model in Korean Text (한글 텍스트 감정 이진 분류 모델 생성을 위한 미세 조정과 전이학습에 관한 연구)

  • JongSoo Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.15-30
    • /
    • 2023
  • Recently, generative models based on the Transformer architecture, such as ChatGPT, have been gaining significant attention. The Transformer architecture has been applied to various neural network models, including Google's BERT(Bidirectional Encoder Representations from Transformers) sentence generation model. In this paper, a method is proposed to create a text binary classification model for determining whether a comment on Korean movie review is positive or negative. To accomplish this, a pre-trained multilingual BERT sentence generation model is fine-tuned and transfer learned using a new Korean training dataset. To achieve this, a pre-trained BERT-Base model for multilingual sentence generation with 104 languages, 12 layers, 768 hidden, 12 attention heads, and 110M parameters is used. To change the pre-trained BERT-Base model into a text classification model, the input and output layers were fine-tuned, resulting in the creation of a new model with 178 million parameters. Using the fine-tuned model, with a maximum word count of 128, a batch size of 16, and 5 epochs, transfer learning is conducted with 10,000 training data and 5,000 testing data. A text sentiment binary classification model for Korean movie review with an accuracy of 0.9582, a loss of 0.1177, and an F1 score of 0.81 has been created. As a result of performing transfer learning with a dataset five times larger, a model with an accuracy of 0.9562, a loss of 0.1202, and an F1 score of 0.86 has been generated.

BART for Korean Natural Language Processing: Named Entity Recognition, Sentiment Analysis, Semantic role labelling (BART를 이용한 한국어 자연어처리: 개체명 인식, 감성분석, 의미역 결정)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.172-175
    • /
    • 2020
  • 최근 자연어처리는 대용량 코퍼스를 이용하여 언어 모델을 사전 학습하고 fine-tuning을 적용함으로 다양한 태스크에서 최고 성능을 갱신하고 있다. BERT기반의 언어 모델들은 양방향의 Transformer만 모델링 되어 있지만 BART는 양방향의 Transformer와 Auto-Regressive Transformer가 결합되어 사전학습을 진행하는 모델로 본 논문에서는 540MB의 코퍼스를 이용해 한국어 BART 모델을 학습 시키고 여러 한국어 자연어처리 태스크에 적용하여 성능 향상 있음을 보였다.

  • PDF

HeavyRoBERTa: Pretrained Language Model for Heavy Industry (HeavyRoBERTa: 중공업 특화 사전 학습 언어 모델)

  • Lee, Jeong-Doo;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.602-604
    • /
    • 2021
  • 최근 자연어 처리 분야에서 사전 학습된 언어 모델은 다양한 응용 태스크에 적용되어 성능을 향상시켰다. 하지만 일반적인 말뭉치로 사전 학습된 언어 모델의 경우 중공업 분야처럼 전문적인 분야의 응용 태스크에서 좋은 성능을 나타내지 못한다. 때문에 본 논문에서는 이러한 문제점을 해결하기 위해 중공업 말뭉치를 이용한 RoBERTa 기반의 중공업 분야에 특화된 언어 모델 HeavyRoBERTa를 제안하고 이를 통해 중공업 말뭉치 상에서 Perplexity와 zero-shot 유의어 추출 태스크에서 성능을 개선시켰다.

  • PDF

Filter-mBART Based Neural Machine Translation Using Parallel Corpus Filtering (병렬 말뭉치 필터링을 적용한 Filter-mBART기반 기계번역 연구)

  • Moon, Hyeonseok;Park, Chanjun;Eo, Sugyeong;Park, JeongBae;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • In the latest trend of machine translation research, the model is pretrained through a large mono lingual corpus and then finetuned with a parallel corpus. Although many studies tend to increase the amount of data used in the pretraining stage, it is hard to say that the amount of data must be increased to improve machine translation performance. In this study, through an experiment based on the mBART model using parallel corpus filtering, we propose that high quality data can yield better machine translation performance, even utilizing smaller amount of data. We propose that it is important to consider the quality of data rather than the amount of data, and it can be used as a guideline for building a training corpus.